Поиск:

Вернуться   Форум > Флейм > Дискуссионный клуб

Ответ
 
Опции темы
Старый 29.10.2008, 15:50 Вверх     #1
Catriana
Лучший Друг Форума
 
Аватар для Catriana
 
  
Регистрация: 14.12.2007
Был(а) у нас: 13.07.2020 11:31
Сообщений: 1,726

Пол: Женский
По умолчанию

"В 1982 году произошло замечательное событие. Исследовательская группа под руководством Alain Aspect при университете в Париже представила эксперимент, который может оказаться одним из самых значительных в 20 веке. Вы не услышите об этом в вечерних новостях. Скорее всего, вы даже не слышали имя Alain Aspect, разве что вы имеете обычай читать научные журналы.

Aspect и его группа обнаружили, что в определенных условиях элементарные частицы, например, электроны, способны мгновенно сообщаться друг с другом независимо от расстояния между ними. Не имеет значения, 10 футов между ними или 10 миллиардов миль.

Каким-то образом каждая частица всегда знает, что делает другая. Проблема этого открытия в том, что оно нарушает постулат Эйнштейна о предельной скорости распространения взаимодействия, равной скорости света. Поскольку путешествие быстрее скорости света равносильно преодолению временного барьера, эта пугающая перспектива заставила некоторых физиков пытаться объяснить опыты Aspect сложными обходными путями. Но других это вдохновило предложить более радикальные объяснения.

Например, физик лондонского университета David Bohm считает, что согласно открытию Aspect, реальная действительность не существует, и что несмотря на ее очевидную плотность, вселенная в своей основе - фикция, гигантская, роскошно детализированная голограмма.

Чтобы понять, почему Bohm сделал такое поразительное заключение, нужно сказать о голограммах. Голограмма представляет собой трехмерную фотографию, сделанную с помощью лазера.

Чтобы сделать голограмму, прежде всего фотографируемый предмет должен быть освещен светом лазера. Тогда второй лазерный луч, складываясь с отраженным светом от предмета, дает интерференционную картину, которая может быть зафиксирована на пленке.

Сделанный снимок выглядит как бессмысленное чередование светлых и темных линий. Но стоит осветить снимок другим лазерным лучом, как тотчас появляется трехмерное изображение снятого предмета.

Трехмерность - не единственное замечательное свойство голограмм. Если голограмму разрезать пополам и осветить лазером, каждая половина будет содержать целое первоначальное изображение. Если же продолжать разрезать голограмму на более мелкие кусочки, на каждом из них мы вновь обнаружим изображение всего объекта в целом. В отличие от обычной фотографии, каждый участок голограммы содержит всю информацию о предмете.

Принцип голограммы “все в каждой части“ позволяет нам принципиально по-новому подойти к вопросу организованности и упорядоченности. Почти на всем своем протяжении западная наука развивалась с идеей о том, что лучший способ понять явление, будь то лягушка или атом, - это рассечь его и изучить составные части. Голограмма показала нам, что некоторые вещи во вселенной не могут это нам позволить. Если мы будем рассекать что-либо, устроенное голографически, мы не получим частей, из которых оно состоит, а получим то же самое, но поменьше размером.

Эти идеи вдохновили Bohm на иную интерпретацию работ Aspect. Bohm уверен, что элементарные частицы взаимодействуют на любом расстоянии не потому, что они обмениваются таинственными сигналами между собой, а потому, что их разделенность есть иллюзия. Он поясняет, что на каком-то более глубоком уровне реальности такие частицы - не отдельные объекты, а фактически продолжения чего-то более фундаментального.

Чтобы это лучше уяснить, Bohm предлагает следующую иллюстрацию.

Представьте себе аквариум с рыбой. Вообразите также, что вы не можете видеть аквариум непосредственно, а можете наблюдать только два телеэкрана, которые передают изображения от камер, расположенных одна спереди, другая сбоку аквариума. Глядя на экраны, вы можете заключить, что рыбы на каждом из экранов - отдельные объекты. Но, продолжая наблюдение, через некоторое время вы обнаружите, что между двумя рыбами на разных экранах существует взаимосвязь.

Когда одна рыба меняется, другая также меняется, немного, но всегда соответственно первой; когда одну рыбу вы видите “в фас“, другую непременно “в профиль“. Если вы не знаете, что это один и тот же аквариум, вы скорее заключите, что рыбы должны как-то моментально общаться друг с другом, чем что это случайность.

То же самое, утверждает Bohm, можно экстраполировать и на элементарные частицы в эксперименте Aspect.

Согласно Bohm, явное сверхсветовое взаимодействие между частицами говорит нам, что существует более глубокий уровень реальности, скрытый от нас, более высокой размерности, чем наша, по аналогии с аквариумом. И, он добавляет, мы видим частицы раздельными потому, что мы видим лишь часть действительности. Частицы - не отдельные “части“, но грани более глубокого единства, которое в конечном итоге голографично и невидимо подобно объекту,
снятому на голограмме. И поскольку все в физической реальности содержится в этом “фантоме“, вселенная сама по себе есть проекция, голограмма.

Вдобавок к ее “фантомности“, такая вселенная может обладать и другими удивительными свойствами. Если разделение частиц - это иллюзия, значит, на более глубоком уровне все предметы в мире бесконечно взаимосвязаны. Электроны в атомах углерода в нашем мозгу связаны с электронами каждого лосося, который плывет, каждого сердца, которое стучит, и каждой звезды, которая сияет в небе.

Все взаимопроникает со всем, и хотя человеческой натуре свойственно все разделять, расчленять, раскладывать по полочкам, все явления природы, все разделения искусственны и природа в конечном итоге есть безразрывная паутина.

В голографическом мире даже время и пространство не могут быть взяты за основу. Потому что такая характеристика, как положение, не имеет смысла во вселенной, где ничто не отделено друг от друга; время и трехмерное пространство - как изображения рыб на экранах, которые должно считать проекциями.

С этой точки зрения реальность - это супер-голограмма, в которой прошлое, настоящее и будущее существуют одновременно. Это значит, что с помощью соответствующего инструментария можно проникнуть вглубь этой супер-голограммы и увидеть картины далекого прошлого.

Что еще может нести в себе голограмма - еще неизвестно. Например, можно представить, что голограмма - это матрица, дающая начало всему в мире, по самой меньшей мере, там есть любые элементарные частицы, существующие либо могущие существовать, - любая форма материи и энергии возможна, от снежинки до квазара, от синего кита до гамма-лучей. Это как бы вселенский супермаркет, в котором есть все.

Хотя Bohm и признает, что у нас нет способа узнать, что еще таит в себе голограмма, он берет смелость утверждать, что у нас нет причин, чтобы предположить, что в ней больше ничего нет. Другими словами, возможно, голографический уровень мира есть очередная ступень бесконечной эволюции.

Bohm не одинок в своем мнении. Независимый нейрофизиолог из стэндфордского университета Karl Pribram, работающий в области исследования мозга, также склоняется к теории голографичности мира. Pribram пришел к этому заключению, размышляя над загадкой, где и как в мозге хранятся воспоминания. Многочисленные эксперименты показали, что информация хранится не в каком-то определенном участке мозга, а рассредоточена по всему объему мозга. В ряде решающих экспериментов в 20-х годах Karl Lashley показал, что независимо от того, какой участок мозга крысы он удалял, он не мог добиться исчезновения условных рефлексов, выработанных у крысы до операции. Никто не смог объяснить механизм, отвечающий этому забавному свойству памяти “все в каждой части“.

Позже, в 60-х, Pribram столкнулся с принципом голографии и понял, что он нашел объяснение, которое искали нейрофизиологи. Pribram уверен, что память содержится не в нейронах и не в группах нейронов, а в сериях нервных импульсов, циркулирующих во всем мозге, точно так же, как кусочек голограммы содержит все изображение целиком. Другими словами, Pribram
уверен, что мозг есть голограмма.

Теория Pribram также объясняет, как человеческий мозг может хранить так много воспоминаний в таком маленьком объеме. Предполагается, что человеческий мозг способен запомнить порядка 10 миллиардов бит за всю жизнь (что соответствует примерно объему информации, содержащемуся в 5 комплектах Британской энциклопедии).


Было обнаружено, что к свойствам голограмм добавилась еще одна поразительная черта - огромная плотность записи. Просто изменяя угол, под которым лазеры освещают фотопленку, можно записать много различных изображений на той же поверхности. Показано, что один кубический сантиметр пленки способен хранить до 10 миллиардов бит информации.

Наша сверъестественная способность быстро отыскивать нужную информацию из громадного объема становится более понятной, если принять, что мозг работает по принципу голограммы. Если друг спросит вас, что пришло вам на ум при слове “зебра“, вам не нужно перебирать весь свой словарный запас, чтобы найти ответ. Ассоциации вроде “полосатая“, “лошадь“ и “живет в Африке“ появляются в вашей голове мгновенно.

Действительно, одно из самых удивительных свойств человеческого мышления - это то, что каждый кусок информации мгновенно взаимо - коррелируется с любым другим - еще одно свойство голограммы. Поскольку любой участок голограммы бесконечно взаимосвязан с любым другим, вполне возможно, что мозг является высшим образцом перекрестно-коррелированных систем, демонстрируемых природой.

Местонахождение памяти - не единственная нейрофизиологическая загадка, которая получила трактовку в свете голографической модели мозга Pribram. Другая - это каким образом мозг способен переводить такую лавину частот, которые он воспринимает различными органами чувств (частоты света, звуковые частоты и так далее) в наше конкретное представление о мире.

Кодирование и декодирование частот - это именно то, с чем голограмма справляется лучше всего. Точно так же, как голограмма служит своего рода линзой, передающим устройством, способным превращать бессмысленный набор частот в связное изображение, так и мозг, по мнению Pribram, содержит такую линзу и использует принципы голографии для математической переработки частот от органов чувств во внутренний мир наших восприятий.

Множество фактов свидетельствуют о том, что мозг использует принцип голографии для функционирования. Теория Pribram находит все больше сторонников среди нейрофизиологов.

Аргентинско-итальянский исследователь Hugo Zucarelli недавно расширил голографическую модель на область акустических явлений. Озадаченный тем фактом, что люди могут определить направление на источник звука, не поворачивая головы, даже если работает только одно ухо, Zucarelli обнаружил, что принципы голографии способны объяснить и эту способность.

Он также разработал технологию голофонической записи звука, способную воспроизводить звуковые картины с потрясающим реализмом.

Мысль Pribram о том, что наш мозг создает “твердую“ реальность, полагаясь на входные частоты, также получила блестящее экспериментальное подтверждение. Было найдено, что любой из наших органов чувств обладает гораздо большим частотным диапазоном восприимчивости, чем предполагалось ранее. Например, исследователи обнаружили, что наши органы зрения
восприимчивы к звуковым частотам, что наше обоняние несколько зависит от того, что сейчас называется [ osmic? ] частоты, и что даже клетки нашего тела чувствительны к широкому диапазону частот. Такие находки наводят на мысль, что это - работа голографической части нашего сознания, которая преобразует раздельные хаотические частоты в непрерывное восприятие.

Но самый потрясающий аспект голографической модели мозга Pribram выявляется, если ее сопоставить с теорией Bohm. Если то, что мы видим, лишь отражение того, что на самом деле “там“ является набором голографических частот, и если мозг - тоже голограмма и лишь выбирает некоторые из частот и математически их преобразует в восприятия, что же на самом деле есть объективная реальность?

Скажем проще - ее не существует. Как испокон веков утверждают восточные религии, материя есть Майя, иллюзия, и хотя мы можем думать, что мы физические и движемся в физическом мире, это тоже иллюзия. На самом деле мы “приемники“, плывущие в калейдоскопическом море частот, и все, что мы извлекаем из этого моря и превращаем в физическую реальность, всего лишь один источник из множества, извлеченных из голограммы.

Эта поразительная новая картина реальности, синтез взглядов Bohm и Pribram названа голографической парадигмой, и хотя многие ученые восприняли ее скептически, других она воодушевила. Небольшая, но растущая группа исследователей считает, что это одна из наиболее точных моделей мира, до сих пор предложенных. Более того, некоторые надеются, что она поможет разрешить некоторые загадки, которые не были ранее объяснены наукой и даже рассматривать паранормальные явления как часть природы. Многочисленные исследователи, в том числе Bohm и Pribram, заключают, что многие парапсихологические феномены становятся более понятными в рамках голографической парадигмы.

Во вселенной, в которой отдельный мозг есть фактически неделимая часть большой голограммы и бесконечно связана с другими, телепатия может быть просто достижением голографического уровня. Становится гораздо легче понять, как информация может доставляться от сознания “А“ к сознанию “Б“ на любое расстояние, и объяснить множество загадок психологии. В частности, Grof предвидит, что голографическая парадигма сможет предложить модель для объяснения многих загадочных феноменов, наблюдающихся людьми во время измененного состояния сознания.

В 50-х годах, во время проведения исследований ЛСД в качестве психотерапевтического препарата, у Grof была женщина-пациент, которая внезапно пришла к убеждению, что она есть самка доисторической рептилии. Во время галлюцинации она дала не только богато детализированное описание того, как это - быть существом, обладающим такими формами, но и отметила цветную чешую на голове у самца того же вида. Grof был поражен обстоятельством, что в беседе с зоологом подтвердилось наличие цветной чешуи на голове у рептилий, играющей важную роль для брачных игр, хотя женщина ранее не имела понятия о таких тонкостях.

Опыт этой женщины не был уникален. Во время его исследований он сталкивался с пациентами, возвращающимися по лестнице эволюции и отождествляющими себя с самыми разными видами (на их основе построена сцена превращения человека в обезъяну в фильме “Измененные состояния“). Более того, он нашел, что такие описания часто содержат зоологические подробности, которые при проверке оказываются точными.

Возврат к животным - не единственный феномен, описанный Grof“ом. У него также были пациенты, которые, по-видимому, могли подключаться к своего рода области коллективного или расового бессознательного. Hеобразованные или малообразованные люди внезапно давали детальные описания похорон в зороастрийской практике либо сцены из индусской мифологии. В других опытах люди давали убедительное описание внетелесных путешествий, предсказания картин будущего, прошлых воплощений.

В более поздних исследованиях Grof обнаружил, что тот же ряд феноменов проявлялся и в сеансах терапии, не включающих применение лекарств. Поскольку общим элементом таких экспериментов явилось расширение сознания за границы пространства и времени, Grof назвал такие проявления “трансперсональным опытом“, и в конце 60-х благодаря ему появилась новая ветвь психологии, названная “трансперсональной“ психологией, посвященная целиком этой области.

Хотя и вновь созданная ассоциация Трансперсональной психологии представляла собой быстро растущую группу профессионалов-единомышленников и стала уважаемой ветвью психологии, ни сам Grof, ни его коллеги не могли предложить механизма, объясняющего странные психологические явления, которые они наблюдали. Но это изменилось с приходом голографической парадигмы.

Как недавно отмечал Grof, если сознание фактически есть часть континуума, лабиринт, соединенный не только с каждым другим сознанием, существующим или существовавшим, но и с каждым атомом, организмом и необъятной областью пространства и времени, тот факт, что могут случайно образовываться тоннели в лабиринте и наличие трансперсонального опыта более не кажутся столь странными.

Голографическая парадигма также накладывает отпечаток на так называемые точные науки, например биологию. Keith Floyd, психолог Колледжа Intermont в Virginia, указал, что если реальность есть всего лишь голографическая иллюзия, то нельзя дальше утверждать, что сознание есть функция мозга. Скорее, наоборот, сознание создает мозг - так же, как тело и все наше окружение мы интерпретируем как физическое.

Такой переворот наших взглядов на биологические структуры позволил исследователям указать, что медицина и наше понимание процесса выздоровления также могут измениться под влиянием голографической парадигмы. Если физическое тело не более чем голографическая проекция нашего сознания, становится ясным, что каждый из нас более ответсвенен за свое здоровье, чем это позволяют достижения медицины. То, что мы сейчас наблюдаем как кажущиееся лечение болезни, в действительности может быть сделано путем изменения сознания, которое внесет соответствующие коррективы в голограмму тела.

Аналогично, альтернативные методики лечения, такие, например, как визуализация, могут работать успешно, поскольку голографическая суть мыслеобразов в конечном итоге столь же реальна, как и “реальность“.

Даже откровения и переживания потустороннего становятся объяснимыми с точки зрения новой парадигмы. Биолог Lyall Watson в своей книге “Дары неизведанного“ описывает встречу с индонезийской женщиной-шаманом, которая, совершая ритуальный танец, была способна заставить мгновенно исчезнуть в тонком мире целую рощу деревьев. Watson пишет, что пока он и еще один удивленный свидетель продолжали наблюдать за ней, она заставила деревья исчезать и появляться несколько раз подряд.

Современная наука неспособна объяснить такие явления. Но они становятся вполне логичными, если допустить, что наша “плотная“ реальность не более чем голографическая проекция. Возможно, мы сможем сформулировать понятия “здесь“ и “там“ точнее, если определим их на уровне человеческого бессознательного, в котором все сознания бесконечно тесно взаимосвязаны.

Если это так, то в целом это наиболее значительное следствие из голографической парадигмы, имея в виду, что явления, наблюдавшиеся Watson, не общедоступны только потому, что наш разум не запрограммирован доверять им, что могло бы сделать их таковыми. В голографической вселенной отсутствуют рамки возможностей для изменения ткани реальности.

То, что мы называем действительностью, есть лишь холст, ожидающий, пока мы начертаем на нем любую картину, какую пожелаем. Все возможно, от сгибания ложек усилием воли, до фантасмагорических сцен в духе Кастанеды в его занятиях с Доном Хуаном, для магии, которой мы владеем изначально, не более и не менее кажущейся, чем наша способность создавать любые миры в своих фантазиях.

Действительно, даже большинство наших “фундаментальных“ знаний сомнительно, в то время как в голографической реальности, на которую указывает Pribram, даже случайные события могли бы быть объяснены и определены с помощью голографических принципов. Совпадения и случайности внезапно обретают смысл, и все что угодно может рассматриваться как метафора, даже цепь случайных событий выражает какую-то глубинную симметрию.

Голографическая парадигма Bohm и Pribram, получит ли она дальнейшее развитие или уйдет в небытие, так или иначе можно утверждать, что она уже приобрела популярность у многих ученых. Даже если будет установлено, что голографическая модель неудовлетворительно описывает мгновенное взаимодействие элементарных частиц, по крайней мере, как указывает физик Байрбэкского колледжа в Лондоне Basil Hiley, открытие Aspect “показало, что мы должны быть готовы рассматривать радикально новые подходы для понимания реальности“.

Этот рассказ основан на так называемой копенгагенской интерпретации квантовой теории, разработанной в конце двадцатых годов нашего века Бором и Гейзенбергом и до сих пор являющейся наиболее общепринятой моделью. Я буду опираться на описание этой модели, данное в работе Генри Стаппа из Калифорнийского университета и сосредотачивающееся на соответствующих аспектах квантовой теории и на определенной разновидности экспериментальных ситуаций, которая часто встречается в субатомной физике (другие аспекты теории мы будем рассматривать позже) . Стапп самым очевидным образом доказывает, что одно из следствий квантовой теории — представление о принципиальной взаимосвязанности всех явлений природы, а также описывает теорию в том контексте, который будет необходим в дальнейшем, при рассмотрении релятивистских моделей субатомных частиц.
Отправной пункт копенгагенской интерпретации — разделение физического мира на наблюдаемую систему ("объект") и наблюдающую систему. Наблюдаемая система может быть атомом, субатомной частицей, атомным процессом и т. д. Наблюдающая система состоит из экспериментального оборудования и одного или нескольких людей-наблюдателей. Значительная сложность заключается в том, что две эти системы рассматриваются совершенно по-разному. Наблюдающую систему описывают в терминах классической физики, что не может быть сделано по отношению к наблюдаемому "объекту" с должной последовательностью. Мы знаем, что классические представления неадекватны на уровне атома, но пользуемся ими для описания экспериментов и подведения итогов. И нет возможности избежать этого парадокса. Технический язык классической физики — лишь очищенный и усовершенствованный повседневный язык, и для описания результатов экспериментов мы не располагаем ничем иным.
Квантовая теория описывает наблюдаемые системы в терминах вероятностей. Это значит, что мы никогда не можем с точностью утверждать, где будет находиться в определенный момент субатомная частица и каким образом будет происходить тот или иной атомный процесс. Все, что мы можем сделать, это предсказать вероятности. Например, большинство частиц, известных в настоящее время, неустойчивы, то есть они, по прошествии определенного времени, распадаются, или "разлагаются", на другие частицы. И точно сказать, когда это произойдет, нельзя. Мы можем только предсказать вероятность распада частицы по прошествии определенного времени, то есть указать среднюю продолжительность существования большей части частиц какой-то определенной разновидности. То же самое можно сказать о "способе" распада. Как правило, частица может распасться на различное количество разнообразных частиц, и снова мы не можем предугадать, какие именно частицы станут продуктом распада исходной частицы. Единственное, что мы можем сказать, это то, что из некоторого большого количества частиц, скажем, шестьдесят процентов частиц распадутся одним образом, еще тридцать — другим, и, наконец, еще десять процентов — третьим. Понятно, что для того, чтобы проверить истинность таких статистических выкладок, нужно произвести множество измерений. И это действительно так — ведь для того, чтобы произвести один эксперимент в области физики высоких энергий, фиксируются и подвергаются анализу десятки тысяч столкновений частиц, и только тогда можно определить вероятность какого-либо процесса.
Важно осознать, что статистические формулировки законов атомной и субатомной физики не отражают нашего незнания физической ситуации, как в случае с использованием вероятностей страховыми компаниями или игроками в азартные игры. В квантовой теории вероятность следует воспринимать как основополагающее свойство атомной действительности, управляющее ходом всех процессов и даже существованием материи. Субатомные частицы не столько существуют в определенное время в определенных местах, сколько "могут существовать", а атомные явления не столько происходят определенным образом в определенные моменты времени, сколько "могут происходить".
Так, мы не можем точно сказать, где в данный момент находится электрон данного атома. Его местонахождение зависит от действия силы притяжения ядра и воздействия других электронов того же атома. Эти обстоятельства создают вероятностную модель местонахождения электрона в различных областях атома. Иллюстрация на рис. 9 может служить примером нескольких вероятностных моделей. Электрон, вероятнее всего, находится там, где фон светлый, и, менее вероятно, там, где фон темный. Очень важный момент — то, что весь паттерн соответствует одному электрону в данный момент. Внутри паттерна мы не можем указать конкретное местонахождение электрона, мы можем лишь с какойто вероятностью указать область его пребывания. На языке формальной математики эти тенденции, или вероятности, выражаются вероятностной функцией — математической величиной, характеризующей вероятности местонахождения электрона в разных точках в разное время.
Контраст между двумя типами описания — классические термины для подготовки эксперимента и вероятностные функции для наблюдаемых объектов — приводит к серьезным метафизическим проблемам, которые до сих пор остаются нерешенными. Тем не менее, на практике эти проблемы попросту обходят, описывая наблюдающую систему в операциональных терминах, то есть в терминах предписаний, позволяющих ученым подготовить и провести эксперимент. Благодаря этому измерительные приборы и сами ученые представляют собой единую комплексную систему, которая не делится на самостоятельные, четко определенные части. Поэтому не нужно описывать экспериментальное оборудование как систему самостоятельной физической природы.
Для дальнейшего описания процесса наблюдения мы приведем конкретный пример с простейшей физической единицей — субатомной частицей, такой, как электрон. Если мы задались целью наблюдать и измерять такую частицу, нам сначала придется ее изолировать или даже создать в процессе того, что называется подготовкой эксперимента. После того, как частица готова для наблюдения, можно измерить ее характеристики, и в этом состоит процесс измерения. Можно символически описать ситуацию следующим образом. Частицу А готовят в точке А, затем она перемещается из А в В и подвергается измерениям в точке В. На практике и подготовка. и измерение частицы могут представлять собой целый ряд довольно сложных процессов. Так, например, в физике высоких энергий при подготовке столкновений частиц частицы-снаряды разгоняются, вновь и вновь двигаясь по круговой дорожке, до тех пор, пока их энергия не возрастет до нужного уровня. Этот процесс происходит в ускорителе частиц. Когда необходимое количество энергии приобретено, частицы покидают ускоритель (А) и перемещаются в район мишени (В), где сталкиваются с другими частицами. Столкновения происходят в пузырьковой камере: частицы оставляют видимые следы, которые потом фотографируются. Подвергая математическому анализу следы частиц, ученые могут говорить о свойствах частиц; при этом часто используют компьютеры: анализ очень сложен. Все эти процессы составляют акт измерения.
Важным моментом является то, что частица — это промежуточная система между процессами в точках А и В. Она существует и имеет смысл только в этом контексте — не как самостоятельная единица, а как промежуточное звено между процессами подготовки и измерения. Свойства частицы нельзя определить независимо от этих процессов. Если в подготовку эксперимента вносятся изменения, свойства частицы тоже изменяются.
С другой стороны, если мы говорим о "частице" или какой либо другой наблюдаемой системе, мы, очевидно, подразумеваем, что существует некоторая самостоятельная единица, которую сначала подготавливают, а потом измеряют. Основная проблема наблюдения в атомной физике, по словам Генри Стаппа, заключается в том, что "наблюдаемая система должна быть изолированной, чтобы ее можно было определить, и, в то же время, взаимодействующей для того, чтобы ее можно было наблюдать" [70, 1303]. Квантовая теория решает эту проблему прагматическим образом, выдвигая требование, которое заключается в том, что наблюдаемая система должна быть свободна от внешних воздействий, вызванных процессом наблюдения, на протяжении определенного периода времени между подготовкой и последующим измерением. Это возможно в том случае, если подготавливающие и измеряющие приспособления находятся на большом физическом удалении, так что наблюдаемый объект может переместиться из точки подготовки в точку измерения.

оно должно быть бесконечно большим. В рамках квантовой теории, понятие самостоятельной физической единицы четко определено только при том условии, что эта единица достаточно удалена от средств наблюдения. На практике это невозможно, да и не нужно. Здесь нам следует не забывать об основном принципе современной науки — принципа относительности всех понятий и теории. В данном случае это означает, что понятие самостоятельной физической единицы не обязательно должно быть четко определено: достаточно приблизительного определения. Это делается следующим образом. Наблюдаемый объект — это воплощение взаимодействия между процессами подготовки и измерения. Как правило, это взаимодействие носит сложный характер и состоит из различных эффектов, действующих на различных расстояниях — имеет различные "ранги", как говорили физики. Теперь, если наиболее важная часть взаимодействия имеет длинный ранг, проявление этого эффекта с длинным рангом переместится на большое расстояние. В таком случае оно будет свободно от внешних воздействий и сможет рассматриваться в качестве самостоятельной физической единицы. Поэтому в рамках квантовой теории все самостоятельные физические единицы представляют собой идеальные модели, имеющие значение лишь при таком условии, что основная часть взаимодействия характеризуется длинным рангом. Подобную ситуацию можно четко определить с математической точки зрения. В физическом отношении она объясняется тем, что измерительные приборы находятся настолько далеко, что в основном взаимодействуют не с исходной, то есть подготовленной частицей, а с частицей или, в более сложных случаях, целой цепочкой частиц, возникшей при участии исходной частицы. Безусловно, помимо этого основного эффекта, будут присутствовать и другие, но ими можно пренебречь в силу достаточного удаления измерительных приборов. Только если приборы не удалены на достаточное расстояние, становятся важными и эффекты короткого ранга. В этом случае вся макроскопическая система образует единое целое, и понятие изолированного объекта утрачивает смысл.

Так, квантовая теория свидетельствует о принципиальном единстве Вселенной. Она показывает, что нельзя разложить мир на независящие друг от друга мельчайшие составляющие. В послесловии мы более подробно поговорим об этой квантовой взаимосвязанности в терминах "нелокальных" соединений, постулированных теоремой Белла. Углубляясь в толщу материи, мы обнаруживаем, что она состоит из частиц, которые, тем не менее, не похожи на "строительные кирпичики" в понимании Демокрита и Ньютона. Это просто идеальные модели, удобные с практической точки зрения, но лишенные фундаментального знания. По словам Нильса Бора, "изолированные материальные частицы — это абстракции, свойства которых могут быть определены и зафиксированы только при их взаимодействии с другими системами" [6,57].
Копенгагенская трактовка квантовой теории не является общепринятой. Было выдвинуто несколько альтернативных вариантов интерпретации, и возникающие при этом философские проблемы еще очень далеки от решения. И все же всеобщая взаимосвязанность всех вещей и событий, очевидно, принципиально присуща атомной действительности, несмотря на разнообразие интерпретаций математического содержания теории. Следующий отрывок из недавней публикации Дэвида Бома, одного из главных оппонентов копенгагенской трактовки, красноречиво свидетельствует об этом:
"Возникает новое представление о неразрывном единстве, отрицающее классические понятия о том, что мир можно разложить на самостоятельные, не зависящие друг от друга части... Общепринятые классические понятия о том, что фундаментальной реальностью являются именно эти независимые "элементарные составные части" мира и что самые разнообразные системы возникают вследствие различных соединений и взаиморасположений этих частей, превращаются в свою противоположность, что неделимое квантовое единство всей Вселенной является наиболее фундаментальной реальностью, а эти относительно независимые составные части — только лишь частные единичные формы внутри этого единства"
Итак, на уровне атома твердые материальные объекты классической физики превращаются в вероятностные схемы, которые, к тому же, отражают не столько вероятности вещей, сколько вероятности соединений между ними. Квантовая теория заставляет нас взглянуть на мир не как на коллекцию физических объектов, а как на сложную сеть взаимоотношений различных частей единого целого.

Приведем несложный пример с субатомной частицей. Наблюдая такую частицу, можно захотеть измерить, среди других свойств, положение частицы и ее импульс (величину, определяющуюся произведением массы частицы на ее скорость). В следующей главе мы увидим, что один из важных законов квантовой теории, принцип неопределенности Гейзенберга, свидетельствует, что эти две величины не могут быть одновременно измерены с одинаковой точностью. Мы можем или получить точные сведения о местонахождении частицы и при этом не знать ничего о ее импульсе (а следовательно, и скорости), или наоборот: либо же обе величины будут охарактеризованы грубо и неопределенно. Важным моментом является то, что это ограничение не имеет никакого отношения к несовершенству наших измерительных приборов. Это принципиальное ограничение, обусловленное самой природой атомной действительности. Если мы собираемся точно определить местонахождение частицы, она просто НЕ ИМЕЕТ определенного импульса, а если мы хотим измерить импульс, она не имеет точного местонахождения.
Следовательно, в атомной физике ученый не может играть роль стороннего наблюдателя, он обречен быть частью наблюдаемого им мира до такой степени, что он сам воздействует на свойства наблюдаемых объектов. Джон Уилер считает, что активное участие наблюдателя — самая важная особенность квантовой теории, и предлагает поэтому заменить слово "наблюдатель" словом "участник". По словам самого Уилера,
"Самое важное в квантовом принципе — это то, что он разрушает представление о мире. "бытующем вовне", когда наблюдатель отделен от своего объекта плоским стеклянным экраном толщиной в двадцать сантиметров. Даже для того, чтобы наблюдать такой крошечный объект, как электрон, приходится разбить стекло. Наблюдатель должен забраться под стекло сам, разместить там свои измерительные приборы. Он должен сам решить, что измерять — импульс или местонахождение. Если ввести туда оборудование, способное измерить одну из этих величин, это исключит возможность размещения аппаратуры, способной измерить другую. Более того, в процессе измерения изменяется состояние самого электрона. После этого Вселенная никогда не станет такой, какой она была раньше. Для того, чтобы описать то, что происходит, нужно зачеркнуть слово "наблюдатель" и написать "участник". В каком-то непредвиденном смысле, наша Вселенная — это участвующая Вселенная"


Фритьоф Капра "Дао физики"
http://bookz.ru/authors/frit_of-kapra/daofizpic.html

Программа исследований, предлагаемая в этой книге, предназначена для проверки основных постулатов современной традиционной науки. По ходу исследований оценивается достоверность семи типичных научных воззрений. Они считаются настолько незыблемыми и не требующими доказательств, настолько редко подвергаются сомнениям, что их уже называют не гипотезами, а здравым смыслом в области науки. Все предположения, в той или иной степени им противоречащие, просто-на¬просто объявляются ненаучными. Вот эти постулаты:
1. Домашние животные не могут обладать какими-либо сверхъестественными способностями.
2. Способность птиц находить дорогу домой и их навигационные способности во время миграции
вполне объяснимы с точки зрения известных органов чувств и физических сил.
3. Колонии общественных насекомых не являются
особыми суперорганизмами с коллективной душой или неизвестным полем. Таких явлений просто не существует в природе.
Люди не могут ощущать пристальный взгляд, направленный в спину, если только это не вызвано реакцией на трудноуловимые сигналы, восприни¬маемые органами чувств.
5. Фантомно ощущаемые ампутированные конечности находятся не там, где они ощущаются. Они существуют лишь в головном мозгу.
6. Численные значения фундаментальных констант не изменяются.
7. Достаточно опытные и ответственные ученые никогда не допустят, чтобы их убеждения повлияли на конечные результаты опытов.
С общепризнанной точки зрения, нет абсолютно никаких оснований тратить силы и средства на подтверждение истинности перечисленных положений. Не стоит даже тратить время на подобные размышления, особенно в ситуации, когда множество насущных научных проблем ждет своего решения. Подобные утверждения не обсуждаются в качестве гипотез, они представляют собой полноправную часть современной науки. Все альтернативные гипотезы объявляются ненаучными и не заслуживающими серьезного внимания или обсуждения. Привлекать к ним внимание — все равно что всерьез утверждать, что Луна сделана из сыра.
Если бы я был азартным человеком, то наверняка держал бы пари по поводу конечных результатов опи¬санных в книге экспериментов. Вполне вероятно, что сторонники общепризнанных научных воззрений поставили бы на полный провал этих экспериментов, предназначенных для выявления сил, необъяснимых с точки зрения современной науки. Но некоторые поставили бы на противоположный исход, и тогда соотношение ставок могло бы послужить критерием, определяющим интенсивность ожиданий каждой из сторон. К примеру, какую сумму вы сами готовы поставить на то, что домашние животные не могут предчувствовать возвращение своих хозяев, если надежно исключаются все известные средства общения? А сколько вы готовы поставить на то, что они все-таки обладают такой способностью?
Я не могу предвидеть исход всех предложенных в этой книге экспериментов, но думаю, что существуют неплохие шансы на очень интересные результаты по крайней мере нескольких из них. В противном случае не было бы никакого смысла писать эту книгу.
Можно с полной уверенностью утверждать, что все исследования, предлагаемые в данной книге, являются табу для ученых традиционного направления, и именно поэтому они остались в стороне. По этой же причине они встречают столь упорное противодействие со стороны академической науки. Возможно, сейчас мы находимся на пороге новой эры, вселяющей в исследователей дух свежести и новизны, открытости и доступности для всех, кто интересуется конкретными проблемами. Не исключено, что через десять—двадцать лет будут созданы новые стереотипы, вновь заговорят о профессионализме в науке, что в конце концов приведет к формированию новой бюрократии, контролирующей всю деятельность ученых. Но сейчас перспективы еще есть.
Каким образом предлагаемые эксперименты могли бы изменить мир? Прежде всего, они могли бы сделать более открытой как экспериментальную, так и теоретическую науку. В культурном отношении подобные изменения имели бы неоценимое значение. Люди могли бы пересмотреть свои взгляды на фольклорные предания и широко распространенные поверья — например, на веру в то, что некоторые животные обладают сверхъестественными способностями или что существуют люди, действительно способные чувствовать чужой пристальный взгляд. Возможно, возникло бы ощущение более тесной связи людей друг с другом и окружающим миром. У экологов появились бы новые аргументы против неограниченного права использовать и покорять природу, что на сегодняшний день является само собой разумеющимся, поскольку интересы человечества ставятся превыше всего, а остальная природа рассматривается как неодушевленная, механическая составляющая реальности. Произошли бы принципиальные изменения в системе образования. Возможно, что в целом интерес общества к науке мог бы значительно возрасти.
Во-вторых, эксперименты, которые описывались в первой части, могли бы привести к новому пониманию способностей животных, а заодно и к новому пониманию человеческих способностей. Возможно, что в ходе экспериментов будет доказано существование невидимых связей между животными и людьми, между животными и местом их постоянного обитания и между членами отдельных социальных групп. Изучение природы подобных связей может потребовать проведения дополнительных исследований, которые, скорее всего, выйдут за пределы, которые может представить традиционная наука. Многие необычные явления в биологии и социальной жизни могут потребовать переосмысления — к примеру, миграция животных, навигационные способности, социальные связи, организация сообществ. В-третьих, эксперименты, описанные в четвертой и пятой главах, могли бы привести к новому пониманию нашего ощущения собственного тела и его взаимодействия с окружающим миром, уничтожить существующий барьер между разумом и телом, между субъективным и объективным. Значение подобных изменений в психологическом, медицинском, культурном и философском плане было бы неоценимо.
В-четвертых, эксперименты, о которых рассказывалось в третьей части, могли бы серьезно пошатнуть веру в неизменность природы и объективность научных исследований. Они могли бы раскрыть смысл утверждения, сделанного философом науки Карлом Поппером в книге «Логика научного открытия»:
«Наука вовсе не покоится на каких-то незыблемых истинах. Можно сказать, что смелая теоретическая конструкция возвышается над болотом, подобно зданию, возведенному на сваях. Эти сваи поднимают здание над окружающим болотом, но не являются его естественным основанием» .
Вполне может оказаться, что постоянство «фундаментальных констант», долгое время считавшееся природным основанием величественного здания науки, в действительности не что иное, как «свая в болоте». Та же участь может постичь и убеждение, что влияние ожиданий экспериментатора — далеко не один из главных источников заблуждений в науке. Так как основание станет чрезвычайно шатким, возникнет необходимость забивать «сваи» еще глубже или же попытаться выстроить какой-то другой фундамент — к примеру, плавучую платформу.
И наконец, к каким бы результатам ни привели предлагаемые эксперименты, у меня есть некоторая надежда, что эта книга в любом случае окажется полезной и продемонстрирует существование многих явлений, которых мы пока не понимаем. Множество фундаментальных вопросов так и остается открытыми. И чтобы найти к ним подход, разум наш также должен быть открыт.


Руперт Шелдрейк
"Семь экспериментов, которые изменят мир"

http://www.koob.ru/sheldrake/

Илья́ Рома́нович Приго́жин (фр. Ilya Prigogine; 25 января 1917, Москва, Российская империя — 28 мая 2003 Остин, Техас) — бельгийский и американский физик и химик российско-еврейского происхождения, лауреат Нобелевской премии по химии 1977 года.

Илья Романович Пригожин родился 25 января 1917 года в Москве вторым сыном в семье фабриканта, выпускника химического отделения Императорского Московского технического училища[1] Рувима Абрамовича Пригожина и пианистки, студентки Московской консерватории Юлии Вихман[2]. В 1921 году семья эмигрировала из Советской России сначала в Литву, а через год обосновалась в Берлине. Однако с ростом антисемитских настроений в Германии, уже через несколько лет (1929) Пригожины решили поселиться в Бельгии, где Илья в 1941 году окончил брюссельский университет (Universitй Libre de Bruxelles). С начала 1960-х годов Пригожин жил в городе Остин (штат Техас), где он в 1967 году основал Центр по изучению сложных квантовых систем (Center for Complex Quantum Systems), которым руководил до конца жизни.

Основная масса его работ посвящена неравновесной термодинамике и статистической механике необратимых процессов. Одно из главных достижений заключалось в том, что было показано существование неравновесных термодинамических систем, которые при определённых условиях, поглощая массу и энергию из окружающего пространства, могут совершать качественный скачок к усложнению (диссипативные структуры). Причём такой скачок не может быть предсказан, исходя из классических законов статистики. Такие системы позже были названы его именем. Расчёт таких систем стал возможен благодаря его работам, выполненным в 1947 году.


Феномен Пригожина

Илья Пригожин, физикохимик по роду занятий, мыслитель по существу, русский по происхождению, франкоязычный бельгиец по культурной принадлежности — человек с чрезвычайно своеобразной интеллектуальной судьбой. Еще своеобразнее культурные последствия того, что он сделал. Его называют «современным Ньютоном», а сделанное им в науке признают основой возможной в будущем новой модели мироздания — третьей в европейское Новое время после моделей Ньютона и Эйнштейна.

Всю свою естественнонаучную жизнь он занимался неравновесной термодинамикой открытых систем - термодинамикой вдали от равновесия, которую он же, со своими брюссельскими коллегами, и создавал. Ему обязана существованием брюссельская школа термодинамики - крупнейшая в своей области; с нею - важный этап в становлении термодинамики необратимых процессов; одна из самых удачных, как говорят, математических моделей в теории самоорганизации и химических колебательных систем - так называемый брюсселятор. В 1977 году Пригожин получил Нобелевскую премию - за достижения сугубо химические: "за работы по термодинамике необратимых процессов и химических колебательных систем, особенно за теорию диссипативных структур". Он ввел само понятие "диссипативные структуры" (исходно - устойчивое упорядоченное неравновесное состояние системы, через которую проходят потоки энергии, массы и энтропии). И еще одно, настолько популярное в последние десятилетия, что оно как будто потеряло авторство: "самоорганизация".

Неравновесными процессами в открытых системах в ушедшем веке занимались многие: один из основателей общей теории систем Л. Берталанфи, Л. Онзагер, Л.И. Мандельштам, М.А. Леонтович, М. Эйген, создатель синергетики Г. Хакен... Но место Пригожина в этом ряду - особенное. Он перенес свои модели с физико-химических структур вещества на структуры вообще: можно, пожалуй, сказать - на структуры бытия: придал естественнонаучным суждениям статус онтологических. И это имело очень большое влияние далеко за пределами области его профессиональных занятий.

Книги Пригожина по неравновесной термодинамике - "Порядок из хаоса: Новый диалог человека с природой", "Время, хаос, квант: К решению парадокса времени" (обе - в соавторстве с И. Стенгерс), "От существующего к возникающему", "Конец определенности: Время, Хаос и новые законы природы" - выдержали не одно издание, с увлечением читаются непрофессионалами, включая и безнадежных гуманитариев, которых пугает самый вид формул. Названия их стали нарицательными, словесные обороты из них вошли в расхожий лексикон гуманитарных текстов, включая публицистику и повседневные разговоры. Узкоспециальная терминология быстро превратилась в элементы культурного языка, понимание которого уже как будто не требует знания ни химии, ни физики.

Издавался он много, в том числе по-русски, но ранние его книги - "Введение в термодинамику необратимых процессов", "Неравновесная статистическая механика", "Химическая термодинамика", "Термодинамическая теория структуры, устойчивости и флуктуаций" - не читались как мировоззренческие, философские, хотя там практически все для этого уже было. Только после 1977 года сам Пригожин приступил к осуществлению программы, конечной целью которой было изменить состав фундаментальных законов физики: включить в него необратимость и вероятность. Занявшись выяснением математических и физических оснований Времени (понятого как принцип бытия - потому мы и пишем его здесь с большой буквы), он поставил себе цель проследить эти основания до самых - естественнонаучно формулируемых - корней бытия. Так химик Пригожин стал превращаться в философа.

Перелом (для "массового" читателя) знаменовала в этом отношении книга Пригожина и Стенгерс "Порядок из хаоса: Новый диалог человека с природой", вышедшая во французском оригинале в 1979 году. По-русски первым изданием она вышла в 1986-м и стала интеллектуальным событием. Вот там-то и были заявлены претензии, по сути дела, на эпистемологическую революцию: на то, чтобы пересмотреть базовые принципы, установки, мыслительные привычки современной науки, восходящие, по меньшей мере, к Ньютону. Сформулировать такие законы природы, которые учитывали бы хаос, возникающий в неустойчивых динамических системах. А таких, по убеждению Пригожина, большинство.

Новый диалог, его онтология и этика

Фундаментальные характеристики мироздания, утверждает он - нестабильность, неравновесность, нелинейность, ни к чему простому не сводимая сложность. Классическое естествознание числило такие процессы по разряду отклонений, которыми следует пренебрегать при окончательном описании объектов. Пригожин увидел в них норму. Сложность первична; простота - частный случай. Разнообразие, множество вариантов возможного развития - первичны; единообразие и предсказуемость - частный случай. Перемены - закон; неизменность - преходяща. Обратимые процессы - частый случай: они происходят только в достаточно простых системах (в качестве примера Пригожин обыкновенно приводит маятник). Но большинство систем в природе - сложные, и процессы в них необратимы. Вся природа по существу - постоянное порождение новых форм, принципов, состояний; она сама - открытая динамическая система, которая "выбирает" свой дальнейший путь в точках бифуркации. Нельзя ни точно предсказать, что будет выбрано, ни вполне надежно это контролировать: в критические моменты все решает случай. Природа-система регулирует себя сама. И должны быть развиты сугубо научные, рациональные средства к тому, чтобы понять мир в таком качестве. Переход от Хаоса к Порядку поддается математическому моделированию; существует ограниченный набор моделей такого перехода - универсальных, которые работают на всех уровнях природного целого.

Пригожин предпринял радикальную ревизию коренных понятий европейского естествознания и мировосприятия вообще. Он предельно расширил понятие Природы, включив в него вообще все, в том числе и человека с его свободой, творчеством и их продуктами. С этих позиций он переосмыслил то, как человек должен себя вести по отношению к своему Большому Целому.

В пределах классического мировосприятия, говорит Пригожин, человек рассматривал природу как механизм и надеялся подчинить себе без остатка. Он же утверждает ее самовольность и самовластность. "Новый диалог" с ней, считает он, должен исключать принуждение и насилие. То есть управлять природой - и отдельными ее частями - в рамках таких представлений очень даже можно: зная механизмы самоорганизации, намеренно ввести в среду нужную флуктуацию - и направить развитие. Правда, лишь в соответствии с возможностями самой среды. Известная свобода выбора у человека есть, но ей придется считаться с собственной "свободой" объекта. Тем более что последствия своих неверных действий человек тоже не может ни предсказать, ни контролировать. В мире Пригожина природу предписывается внимательно выслушать, а затем уже предложить ей что-то такое, с чем она могла бы согласиться. В качестве идеологии всe это, может быть, и банально, но Пригожин отличается от прочих рассуждающих на подобные темы тем, что сформулировал конкретные естественнонаучные основания такой этики.

Пока коллеги-профессионалы спорили с Пригожиным, от его концепции, едва ли не сразу по ее возникновении, стали расходиться круги по многим областям знания. Уже сам Пригожин предложил рассматривать через призму понятий неравновесных процессов и открытых, самоорганизующихся систем социальные, психические, биологические явления, - и принято это было очень быстро. Его модели заработали в экономике и географии, геологии и лингвистике, экологии и медицине, демографии и метеорологии, - вообще едва ли не везде, где можно обнаружить развивающиеся системы: я сама сталкивалась с ними в текстах о "путях аграрного развития России", о "проблеме предотвращения конфликтов в Центральной Азии", об "истории структуры 1-й Государственной думы и ее фракций", о "законе кармы".

Время: мысли и чувства

Стержнем всего проекта и главной своей интеллектуальной заслугой сам Пригожин считает "переоткрытие" понятия Времени. Действительно, отношение ко времени (отождествленному с необратимостью) в "гуманитарном" и "естественнонаучном" пластах новоевропейской культуры издавна было очень разным. Насколько озабочено неумолимым временем было все, связанное с человеком, - настолько пренебрегали им в науках, занимавшихся "внечеловеческой" природой. Со времен Ньютона наука - чем дальше, тем больше претендовавшая на то, чтобы быть мировоззрением вообще, -утверждала, что в фундаментальных структурах мироздания никакого времени нет. Иллюзия его возникает в мире, статичном по существу, из-за того, что меняется положение и точка зрения самого наблюдателя. Время - в человеке; это, в каком-то смысле, сам человек.

Обратимым - по существу иллюзорным - время оставалось и для автора первого после Ньютона большого научного переворота - Эйнштейна. "Природа знать не знает о былом, ей чужды наши призрачные годы..."

Тут надо сказать, что пересмотр отношений со временем (в частности, нетривиальная для прежних эпох идея его "многомерности") - одна из сквозных идей ХХ века. Пересмотр отношений с культурными константами столь глубокого залегания - свидетельство радикальных переломов в культурной истории. В этот пересмотр Пригожин включился по-особенному: как традиционалист - представитель и продолжатель самой что ни на есть классической для Нового времени традиции. Он внедрил в описание фундаментальных уровней бытия ("законов природы") идею, она же и чувство, на которой европейская культура строилась веками. Ей ведь совершенно чужда невозмутимость восточных, например, культур в отношении времени. Напряженное, динамичное чувство времени - одно из самых характерных европейских чувств. Европеец живeт постольку, поскольку всe время преодолевает свои прежние состояния, поскольку его выталкивают из этих состояний силы, которые он описывает как законы истории.

Последние два столетия различные формы историзма (интеллектуальной чувствительности ко Времени) интенсивно, но очень неравномерно врастали в разные области знания. Раньше всего это произошло в искусствах и гуманитарных науках (и не удивительно: они ближе всего к живому человеческому чувству). В XVIII веке Время заметила в своих объектах космология (космогоническая теория Канта - Лапласа). Затем, в XIX -геология (историческая геология Лайеля). Далее - биология: эволюционизм Дарвина. В физике же и химии - занимающихся "фундаментальными" процессами в веществе - дело обстояло куда сложнее.

Эволюционизм здесь наталкивался на неколебимое представление (глубокое - на уровне интуитивного чувства), что на самом глубоком уровне никаких изменений - и никакого времени - быть не может. Поэтому в семидесятые годы XIX века потерпел неудачу крупный физик Людвиг Больцман, последовательный сторонник эволюционной теории Дарвина, попытавшийся стать Дарвином в физике. Он, кстати, впервые ввел временную необратимость в описании системы на микроуровне. Современное Больцману научное сообщество не поняло программы "эволюционизма" в физике и не приняло ее. Ей предстояло ждать своего часа еще почти столетие, а "Дарвином" физики суждено было стать, вероятно, Пригожину.

Возможно, впечатление, которое произвел Дарвин на своих современников, нам теперь трудно как следует оценить и прочувствовать. Оно апеллировало напрямую не только к умственным привычкам времени, но и к самим его мировоззренческим установкам. Может быть, идеи Дарвина определили все дальнейшие отношения европейского человека со Временем и Развитием. От его теории ждали, что она даст универсальный объяснительный принцип, который будет успешно работать на внебиологических материалах - в той же физике. Больцман, например, готов был перенести ее и на методы самого мышления. Соблазны "парадигматизации" дарвиновского подхода появились немедленно, закрепились в культурной памяти и потом уже воспроизводились при удобных случаях. Ведь нечто подобное произошло и с пригожинской теорией диссипативных структур! И это совсем не случайно.

Как интеллектуальное событие Пригожин был подготовлен по меньшей мере всем XIX веком, на протяжении которого происходили, накапливаясь, события разной степени радикальности, в целом "сдвигавшие" научное мировосприятие от жесткого детерминизма и механистичности в сторону статистического и вероятностного подхода. Развитие, эволюция - вообще ведущие понятия в мышлении XIX века; понятие "абсолютного" за всем этим в течение последних двух веков постепенно теряется, пока не исчезает, наконец, совсем. В немецком идеализме, философской доминанте начала века, под Развитием понимается еще развитие Абсолютного Субъекта - богочеловечества. Но в следующую эпоху в эволюционизме Дарвина, Конта, Спенсера оно уже - развитие природы, а история челове-ка - завершающая фаза естественноисторического процесса. Отныне Время, форма развития живого, связывается с непрестанным порождением нового. Идея развития проникала в структуру мысли все глубже, пока, наконец, не встал вопрос о механизмах и природе развития как такового. И наука, и культура в целом ко времени Пригожина уже были "готовы" к тому, чтобы кто-то задумался наконец о возможной "общей теории изменений".

Оправдание Случая

До-пригожинским европейским мышлением была освоена в основном необратимость "с человеческим лицом". Оно знало еe, например, под именем Судьбы, Рока. А вместе с ними, в том же букете понятия, которым Пригожин тоже предложил полноценный естественнонаучный - и на основе этого философский статус: Случайность, Вероятность, Выбор... - все то, из чего рождается, в чем осуществляется Судьба-Необратимость в еe человеческих обличьях. А Пригожин взялся показать, как все это происходит на уровне "естественных", глубоких структур бытия. Опираясь на работы русских математиков А.Н. Колмогорова, Я.Г. Синая, В.И. Арнольда, он описал новые классы неустойчивых динамических систем, поведение которых можно охарактеризовать как случайное. Так Случай получил естественнонаучный статус и стал предметом рационального моделирования.

Случай и Вероятность постигла в европейской культуре в известном смысле та же судьба, что и Время с его необратимостью. О них много говорили - только не в пределах науки. Классическая наука занималась связями и закономерностями существенными, необходимыми, общеобязательными. Случай же - вещь принципиально "иррациональная" - властвовал над человеческой, слишком человеческой, далекой от всякой науки жизнью (опять человек и Большая Природа оказались как бы по разные стороны "барьера" -как будто в различно устроенных сферах бытия).

Научная история неопределенности началась тоже в XIX веке. Немецкий физик, физиолог, натурфилософ Г.Т. Фехнер (1801 - 1887) первым всерьeз заговорил об индетерминизме в естественных науках, даже выделил там разные его варианты. Причем интересно, что идея неопределенности у него связана с представлением о мире как едином органическом целом и о некоем "высшем" законе, через который мир может быть описан в качестве такого целого. Пригожин, разумеется, не наследник и не продолжатель Фехнера; здесь преемственность не концепций, а тем и интуиций. Да, у Фехнера такие интуиции возникали в пределах совершенно других установок, которые нынешней культурой чувствуются как безнадежно архаичные. Но уверенность его в том, что есть неопределенность, коренящаяся в самом процессе с его непредсказуемым развитием, оказалась точным попаданием и нашла продолжение в вероятностных теориях ХХ века. Продолжил эту тему и Пригожин.

Энтропия, или Судьбы необратимости

У образа необратимости - большой, космологической - в новоевропейской мысли были свои этапы развития. Первый из них определялся представлением, согласно которому еe нет - или, что то же, для понимания мироздания ею можно пренебречь. Следующий этап начался в XIX веке и ознаменовался формулировкой второго начала термодинамики. Новое понимание гласило: необратимость есть, она разрушительна; в перспективе - неизбежная тепловая смерть Вселенной. Третий этап начался в ХХ веке и связан с именем Пригожина. Основные идеи: необратимость, во-первых, пронизывает все уровни мироздания, а во-вторых, она способна быть конструктивной - вообще она скорее синоним жизни, чем смерти. Пригожин - чего до него, кажется, никто не делал - показал конструктивную роль разрушения - известного классической термодинамике под именем энтропии.

Несмотря на своe греческое имя, как бы автоматически свидетельствующее о древности понятия, энтропии нет и полутора веков. Его ввел в 1865 году Р. Клаузиус как понятие физическое: энтропия (S) в термодинамике - функция состояния термодинамической системы. Согласно второму началу термодинамики, в замкнутой системе неравновесные процессы сопровождаются ростом энтропии и приближают систему к состоянию равновесия, в котором она максимальна. Это состояние необратимо; в нeм система уже не способна совершать работу; теплообмен прекращается. Особый драматизм закону придает статистическая интерпретация. В ней энтропия - мера беспорядка в системе, а конечный результат действия второго начала термодинамики - однородность, лишенная формы, иерархии, вообще какой-либо дифференциации. Другое ее имя - смерть.

Неравновесные процессы в открытых (сообщающихся со своей средой) системах, которые изучает термодинамика Пригожина, тоже связаны с возрастанием энтропии, но наделяются новым смыслом. Она перестает быть синонимом смерти.

Классическую термодинамику сам Пригожин назвал теорией "разрушения структуры" и взялся дополнить ее теорией "создания структуры". Дав четкую естественнонаучную формулировку конструктивной роли, которую на всех уровнях природы играют необратимые процессы, он предложил основы будущей всеобщей теории формообразования: кристаллизации порядка из неупорядоченных (и неравновесных) состояний. Необратимость была введена в уровень фундаментальных законов физики.

В открытых системах отток энтропии наружу способен уравновесить ее рост в самой системе. Тогда может возникнуть и поддерживаться стационарное состояние (Берталанфи назвал его "текущим равновесием"). По своим характеристикам оно может быть близко к равновесным состояниям; в этом случае производство энтропии будет минимальным (это - так называемая теорема Пригожина, которую он доказал ещe в 1947 году). Но если отток энтропии превысит ее внутреннее производство - возникнут и станут разрастаться до макроскопического уровня крупномасштабные флуктуации. Начнется самоорганизация системы: из первоначального хаоса станут возникать все более упорядоченные структуры, всe более сложно организованные состояния.

Хаос от Гесиода до Пригожина, или История Хаоса как часть истории Логоса

Заговорив о Хаосе, Пригожин затронул - и привил к стволу европейского классического рационализма - одну из очень древних тем (не древнее ли темы Времени?). Корни ее - там, где мысль еще едина со своими мифологическими истоками. Ведь мир возникает из первоначального Хаоса едва ли не во всех мифологиях. В европейской традиции это имя впервые произнес Гесиод, и обозначало оно темную зияющую пра-бездну, которая возникла прежде всего остального.

В самом своем начале интеллектуальная история Хаоса была очень интенсивной. Философы-досократики, очень любившие рассуждать о нем, порой трактовали Хаос чуть ли не по-пригожински: как неупорядоченное первовещество, первоначало Вселенной (чаще всего его отождествляли с водой), из которого - случайно или под воздействием неких сил, противоборствующих или упорядочивающих, - рождается мир. Эта же мысль знакома и стоикам: Хаос у них - кладовая первовещества, из нее подпитывается Космос-порядок.

С началом христианской эры Хаос приобретает однозначно негативные коннотации. Он появляется уже в Книге Бытия: "тьма над бездною", бывшая до сотворения мира, - это тьма именно над хаосом. Бездна - в греческом тексте Септуагинты, "темная, бездонная, страшная пустота" - очень близка к хаосу греков. Но этот Хаос уже не мог быть первоматерией, источником возникновения всего: ведь библейский мир сотворен из ничего. Хаосу осталась роль Ада: в этом качестве он и продолжает существовать, и именно оттуда в конце времен, как сказано в Апокалипсисе, предстоит выйти Зверю.

В Средние века опять вспомнили о Хаосе; Василий Великий, Беда Достопочтенный, Фома Аквинский увидели в нем так называемую вторичную материю (sylva) - результат первого акта творения. "Беспорядочное смешение телесной твари, которое древние звали хаосом" (так назвал Фома эту разреженную массу беспорядочно движущихся первоэлементов), была первым состоянием вселенной, до существования оформленных тел - правда, лишь логически, а не по времени. В этом явно отозвался Хаос стоиков.

В Новое же Время мысль как будто забыла о Хаосе. Новоевропейская наука не занимается им, она интересуется порядком. Впрочем, может быть, для нее никакого хаоса в мире-механизме и вовсе нет? Он если где и есть, то разве только в душах и делах неразумных людей. То есть раз его нет в объективном составе бытия - он, как и необратимое Время, - в каком-то смысле иллюзорен.

К Хаосу после перерыва в несколько столетий вернулись в начале ХХ века. Правда, им занялось скорее воображение, чем мысль, а если и мысль - то в основном художественная и гуманитарная. Сохранялось чувство, что Хаос (как и Время) - это принадлежность человеческих дел. Следующий этап интеллектуальной истории Хаоса начался во второй половине века: этап научного, рационального его освоения; им занялись естественные науки и технологии. Это неспроста совпало с возникновением чувства, что старые модели рациональности не годятся, их нужно или расширять (как предлагает Пригожин), или радикально трансформировать. Очень популярна стала тема ограниченности знания. Логос обращается к Хаосу, когда у него возникают проблемы с самим собой, с собственными возможностями и границами - как к своему ре-зерву?

Пригожин был не одинок в интеллектуальной "реабилитации" Хаоса, но роль ему принадлежала очень большая, в своeм роде единственная. Так же, как это было со Временем, он предложил основы естественнонаучного языка, на котором стало можно говорить о Хаосе. Хаос и порядок теперь видятся как части одного целого. Они предполагают друг друга, нуждаются друг в друге, возникают друг из друга. Хаос, утверждал Пригожин, способен быть продуктивным. На микроуровне он присутствует всегда; он - физическая основа нестабильности. А благодаря ей объекты в определенных условиях становятся чувствительными к возмущениям на микроуровне, флуктуациям - и те влияют на макромасштабное поведение объекта! В классических подходах такие влияния вообще не рассматривались. Бывший синоним "иррационального", "тeмноты", "бездны", Хаос вошeл в границы Логоса, стал его частью. Из области "иррационального" (надо ли говорить, насколько "иррациональное" - культурный конструкт!) переместился в другую культурно сконструированную область: "рационального".

Пригожин довел до глубоких следствий процессы, начавшиеся в европейском мышлении задолго до него. Прежде всего - это вращивание понятия Времени в структуру понимания все новых и новых областей реальности. Но корни сделанного им - не понятийные, они прежде всего ценностные.

Илья Пригожин
Философия нестабильности


У термина "нестабильность" странная судьба. Введенный в широкое употребление совсем недавно, он используется порой с едва скрываемым негативным оттенком, и притом, как правило, для выражения содержания, которое следовало бы исключить из подлинно научного описания реальности. Чтобы проиллюстрировать это на материале физики, рассмотрим элементарный феномен, известный, по-видимому, уже не менее тысячи лет: обычный маятник, оба конца которого связаны жестким стержнем, причем один конец неподвижно закреплен, а другой может совершать колебания с произвольной амплитудой. Если вывести такой маятник из состояния покоя, несильно качнув его груз, то в конце концов маятник остановится в первоначальном (самом нижнем) положении. Это — хорошо изученное устойчивое явление. Если же расположить маятник так, чтобы груз оказался в точке, противоположной самому нижнему положению, то рано или поздно он упадет либо вправо, либо влево, причем достаточно будет очень малой вибрации, чтобы направить его падение в ту, а не в другую сторону. Так вот, верхнее (неустойчивое) положение маятника практически никогда не находилось в фокусе внимания исследователей, и это несмотря на то, что со времени первых работ по механике движение маятника изучалось с особой тщательностью. Можно сказать, что понятие нестабильности было, в некоем смысле, идеологически запрещено. А дело заключается в том, что феномен нестабильности естественным образом приводит к весьма нетривиальным, серьезным проблемам, первая из которых — проблема предсказания.

Если взять устойчивый маятник и раскачать его, то дальнейший ход событий можно предсказать однозначно: груз вернется к состоянию с минимумом колебаний, т.е. к состоянию покоя. Если же груз находится в верхней точке, то в принципе невозможно предсказать, упадет он вправо или влево. Направление падения здесь существенным образом зависит от флюктуации. Так что в одном случае ситуация в принципе предсказуема, а в другом — нет, и именно в этом пункте в полный рост встает проблема детерминизма. При малых колебаниях маятник — детерминистический объект, и мы в точности знаем, что должно произойти. Напротив, проблемы, связанные с маятником, если можно так выразиться, перевернутым с ног на голову, содержат представления о недетерминистическом объекте.

Это различие между детерминистическими законами природы и законами, не являющимися таковыми, ведет нас к более общим проблемам, которые мне и хотелось бы здесь вкратце обсудить.

Человек и природа

Прежде всего, спросим себя: почему именно сегодня в естествознании заговорили о нестабильности, тогда как прежде господствовала точка зрения детерминизма? Дело в том, что идея нестабильности не только в каком-то смысле теоретически потеснила детерминизм, она, кроме того, позволила включить в поле зрения естествознания человеческую деятельность, дав, таким образом, возможность более полно включить человека в природу. Соответственно, нестабильность, непредсказуемость и, в конечном счете, время как сущностная переменная стали играть теперь немаловажную роль в преодолении той разобщенности, которая всегда существовала между социальными исследованиями и науками о природе.

В чем, однако, смысл тех изменений, которые произошли (в интересующем нас плане) в отношениях человека к природе? В детерминистском мире природа поддается полному контролю со стороны человека, представляя собой инертный объект его желаний. Если же природе, в качестве сущностной характеристики, присуща нестабильность, то человек просто обязан более осторожно и деликатно относиться; к окружающему его миру, — хотя бы из-за неспособности однозначно предсказывать то, что произойдет в будущем.

Далее, принимая в науке идею нестабильности, мы достигаем тем самым и более широкого понимания существа самой науки. Мы начинаем понимать, что западная наука, в том виде, как она до недавних пор существовала, обусловлена культурным контекстом XVII в. — периода зарождения современного естествознания и что эта наука ограничена. В результате начинает складываться более общее понимание науки и знания вообще, понимание, отвечающее культурным традициям не только западной цивилизации.

К сожалению, однако, приходится признать, что современная культурная жизнь крайне разобщена даже внутри западной цивилизации. В книге, имевшей недавно большой успех в США, Алан Блум утверждает, что наука является материалистическим, редукционистским, детерминистическим феноменом, полностью исключающим время. Но если упрек Блума и справедлив относительно науки 20—30-летней давности, то к сегодняшней науке эти характеристики явно не применимы, — она не сводима ни к материализму, ни к детерминизму.

Лейбниц: исключение нестабильности

Для того чтобы понять идущие в современной науке процессы, необходимо принять во внимание, что наука — культурный феномен, складывающийся в определенном культурном контексте. Иллюстрацией этому может служить, например, дискуссия между Лейбницем и Кларком, представлявшим в их споре взгляды Ньютона. Лейбниц упрекает Ньютона в том, что его представление об универсуме предполагает периодическое вмешательство Бога в устройство мироздания ради улучшения функционирования последнего. Ньютон, по его мнению, недостаточно почитает Бога, поскольку искусность Верховного Творца у него оказывается ниже даже искусности часовщика, способного раз и навсегда сообщить своему механизму движение и заставить его работать без дополнительных переделок[1].

Лейбницевские представления об универсуме одержали победу над ньютонианскими. Лейбниц апеллировал к всеведению вездесущего Бога, которому вовсе нет никакой нужды специально обращать свое внимание на Землю. И он верил при этом, что наука когда-нибудь достигнет такого же всеведения — ученый приблизится к знанию, равному божественному. Для божественного же знания нет различия между прошлым и будущим, ибо все присутствует во всеведущем разуме. Время, с этой точки зрения, элиминируется неизбежно, и сам факт его исключения становится свидетельством того, что человек приблизился к квазибожественному знанию.

Высказанные Лейбницем утверждения принадлежат к базовому уровню идеологии классической науки, сделавшей именно устойчивый маятник объектом научного интереса, — неустойчивый маятник в контексте этой идеологии предстает как неестественное образование, упоминаемое только в качестве любопытного курьеза (а по возможности вообще исключаемое из научного рассмотрения). Но изложенная концепция вечности грешила тем, что в ней не оставалось места для уникальных событий (впрочем, и в ньютоновском подходе не было места для новаций). Материя, согласно этой концепции, представляет собой вечно движущуюся массу, лишенную каких бы то ни было событий и, естественно, истории. История же, таким образом, оказывается вне материи. Так исключение нестабильности, обращение к детерминизму и отрицание времени породили два противоположных способа видения универсума:

—универсум как внешний мир, являющийся в конечном счете регулируемым автоматом (именно так и представлял его себе Лейбниц), находящимся в бесконечном движении;

—универсум как внутренний мир человека, настолько отличающийся от внешнего, что это позволило Бергсону сказать о нем: "Я полагаю, что творческие импульсы сопровождают каждое мгновение нашей жизни".

Действительно, любые человеческие и социальные взаимодействия, а также вся литературная деятельность являются выражением неопределенности в отношении будущего. Но сегодня, когда физики пытаются конструктивно включить нестабильность в картину универсума, наблюдается сближение внутреннего и внешнего миров, что, возможно, является одним из важнейших культурных событий нашего времени.

Новые открытия

Разумеется, введение нестабильности является результатом отнюдь не только идеологических особенностей истории науки XX в. Оно стало реальностью лишь благодаря сочетанию ряда собственно научных экспериментальных и теоретических открытий. Это, во-первых, открытие неравновесных структур, которые возникают как результат необратимых процессов и в которых системные связи устанавливаются сами собой; это, во-вторых, вытекающая из открытия неравновесных структур идея конструктивной роли времени; и, наконец, это появление новых идей относительно динамических, нестабильных систем, — идей, полностью меняющих наше представление о детерминизме.

В 1986 г. сэр Джеймс Лайтхил, ставший позже президентом Международного союза чистой и прикладной математики, сделал удивительное заявление: он извинился от имени своих коллег за то, что "в течение трех веков образованная публика вводилась в заблуждение апологией детерминизма, основанного на системе Ньютона, тогда как можно считать доказанным, по крайней мере с 1960 года, что этот детерминизм является ошибочной позицией.

Не правда ли, крайне неожиданное заявление? Мы все совершаем ошибки и каемся в них, но есть нечто экстраординарное в том, что кто-то просит извинения от имени целого научного сообщества за распространение последним ошибочных идей в течение трех веков. Хотя, конечно, нельзя не признать, что данные, пусть ошибочные, идеи играли основополагающую роль во всех науках — чистых, социальных, экономических, и даже в философии (учитывая, что в рамках последней сложилась кантовская проблематика). Более того, эти идеи задали тон практически всему западному мышлению, разрывающемуся между двумя образами: детерминистический внешний мир и индетерминистический внутренний.

И наконец, продолжая начатый выше перечень открытий, следует упомянуть об открытиях в области элементарных частиц, продемонстрировавших фундаментальную нестабильность материи, а также о космологических открытиях, констатировавших, что мироздание имеет историю (тогда как традиционная точка зрения исключала какую бы то ни было историю универсума, ибо универсум рассматривался как целое, содержащее в себе все, что делало бессмысленным саму идею его истории) Заметим, вместе с тем, что простейшие из вышеперечисленных открытий легко доступны нам, так как лежат в сфере макроскопических, химических и атмосферных явлений. Так, например, закон роста энтропии был сформулирован еще в XIX в. Другое дело, что на фоне установки, исключающей время из научного описания, он рассматривался лишь как закон роста беспорядка, а установка эта являет нам очевидный пример идеологичности научных суждений. Впрочем, сегодня мы можем согласиться: наука и есть в некотором смысле идеология — она ведь также укоренена в культуре. И нет поэтому ничего удивительного в том, что новые вопросы, вливающие в науку свежие силы, часто исходят из традиций вопрошания, коренящихся в совсем иных культурах. А тот факт, что сегодня самые разные культурные образования принимают участие в развитии научной культуры, является для нас источником новых надежд. Мы верим — будут сформулированы иные вопросы, ведущие к новым направлениям научной деятельности.

Порядок и беспорядок

Сегодня мы знаем, что увеличение энтропии отнюдь не сводится к увеличению беспорядка, ибо порядок и беспорядок возникают и существуют одновременно. Например, если в две соединенные емкости поместить два газа, допустим, водород и азот, а затем подогреть одну емкость и охладить другую, то в результате, из-за разницы температур, в одной емкости будет больше водорода, а в другой азота. В данном случае мы имеем дело с диссипативным процессом, который, с одной стороны, творит беспорядок и одновременно, с другой, потоком тепла создает порядок: водород в одной емкости, азот — в другой. Порядок и беспорядок, таким образом, оказываются тесно связанными — один включает в себя другой. И эту констатацию мы можем оценить как главное изменение, которое происходит в нашем восприятии универсума сегодня.

Долгое время наше видение мира оставалось неполным. Как неполным будет, скажем, вид, открывающийся из окна самолета при подлете к Венеции: пока в поле нашего зрения находятся величественные здания и площади, нас не оставляет образ совершенной, упорядоченной, грандиозной структуры. По прибытии в город мы обнаруживаем и не слишком чистую воду, и назойливую мошкару, но именно таким путем перед нами предстают обе стороны объекта. Что касается современного видения мира, то интересно отметить, что космология теперь все мироздание рассматривает как в значительной мере беспорядочную — а я бы сказал, как существенно беспорядочную — среду, в которой выкристаллизовывается порядок. Новейшие же исследования показали, что на каждый миллиард тепловых фотонов, пребывающих в беспорядке, приходится по крайней мере одна элементарная частица, способная стимулировать в данном множестве фотонов переход к упорядоченной структуре. Так, порядок и беспорядок сосуществуют как два аспекта одного целого и дают нам различное видение мира.

Наше восприятие природы становится дуалистическим, и стержневым моментом в таком восприятии становится представление о неравновесности. Причем неравновесности, ведущей не только к порядку и беспорядку, но открывающей также возможность для возникновения уникальных событий, ибо спектр возможных способов существования объектов в этом случае значительно расширяется (в сравнении с образом равновесного мира). В ситуации далекой от равновесия дифференциальные уравнения, моделирующие тот или иной природный процесс, становятся нелинейными, а нелинейное уравнение обычно имеет более, чем один тип решений. Поэтому в любой момент времени может возникнуть новый тип решения, не сводимый к предыдущему, а в точках смены типов решений — в точках бифуркации — может происходить смена пространственно-временной организации объекта.

Примером подобного возникновения новой пространственно-временной структуры могут служить так называемые химические часы — химический процесс, в ходе которого раствор периодически меняет свою окраску с голубой на красную. Кажется, будто молекулы, находящиеся в разных областях раствора, могут каким-то образом общаться друг с другом. Во всяком случае, очевидно, что вдали от равновесия когерентность поведения молекул в огромной степени возрастает. В равновесии молекула "видит" только своих непосредственных соседей и "общается" только с ними. Вдали же от равновесия каждая часть системы "видит" всю систему целиком. Можно сказать, что в равновесии материи слепа, а вне равновесия прозревает. Следовательно, лишь в неравновесной системе могут иметь место уникальные события и флюктуации, способствующие этим событиям, а также происходит расширение масштабов системы, повышение ее чувствительности к внешнему миру и, наконец, возникает историческая перспектива, т.е. возможность появления других, быть может более совершенных, форм организации. И, помимо всего этого, возникает новая категория феноменов, именуемых аттракторами.

Вернемся к нашему примеру с маятником. Если сдвинуть груз маятника недалеко от его самого нижнего положения, то в конце концов он вернется в исходную точку — это точечный аттрактор. Химические часы являются периодическим аттрактором. В дальнейшем были открыты гораздо более сложные аттракторы (странные аттракторы), соответствующие множеству точек. В странном аттракторе система движется от одной точки к другой детерминированным образом, но траектория движения в конце концов настолько запутывается, что предсказать движение системы в целом невозможно — это смесь стабильности и нестабильности. И, что особенно удивительно, окружающая нас среда, климат, экология и, между прочим, наша нервная система могут быть поняты только в свете описанных представлений, учитывающих как стабильность, так и нестабильность. Это обстоятельство вызывает повышенный интерес многих физиков, химиков, метеорологов, специалистов в области экологии. Указанные объекты детерминированы странными аттракторами и, следовательно, своеобразной смесью стабильности и нестабильности, что крайне затрудняет предсказание их будущего поведения.

Новое отношение к миру

Не нами выбран мир, который нам приходится изучать; мы родились в этом мире и нам следует воспринимать его таким, каким он существует, приспосабливая к нему, насколько возможно, наши априорные представления. Да, мир нестабилен. Но это не означает, что он не поддается научному изучению. Признание нестабильности — не капитуляция, напротив — приглашение к новым экспериментальным и теоретическим исследованиям, принимающим в расчет специфический характер этого мира. Следует лишь распроститься с представлением, будто этот мир — наш безропотный слуга. Мы должны с уважением относиться к нему. Мы должны признать, что не можем полностью контролировать окружающий нас мир нестабильных феноменов, как не можем полностью контролировать социальные процессы (хотя экстраполяция классической физики на общество долгое время заставляла нас поверить в это).

Открытие неравновесных структур, как известно, сопровождалось революцией в изучении траекторий. Оказалось, что траектории многих систем нестабильны, а это значит, что мы можем делать достоверные предсказания лишь на коротких временных интервалах. Краткость же этих интервалов (называемых также темпоральным горизонтом или экспонентой Ляпунова) означает, что по прошествии определенного периода времени траектория неизбежно ускользает от нас, т.е. мы лишаемся информации о ней. Это, кстати, служит еще одним напоминанием, что наше знание — всего лишь небольшое оконце в универсум и что из-за нестабильности мира нам следует отказаться даже от мечты об исчерпывающем знании. Заглядывая в оконце, мы можем, конечно, экстраполировать имеющиеся знания за границы нашего видения и строить догадки по поводу того, каким мог бы быть механизм, управляющий динамикой универсума. Однако нам не следует забывать, что, хотя мы в принципе и можем знать начальные условия в бесконечном числе точек, будущее, тем не менее, остается принципиально непредсказуемым.

И еще, заметим, новое отношение к миру предполагает сближение деятельности ученого и литератора. Литературное произведение, как правило, начинается с описания исходной ситуации с помощью конечного числа слов, причем в этой своей части повествование еще открыто для многочисленных различных линий развития сюжета. Эта особенность литературного произведения как раз и придает чтению занимательность — всегда интересно, какой из возможных вариантов развития исходной ситуации будет реализован. Так же и в музыке — в фугах Баха, например, заданная тема всегда допускает великое множество продолжений, из которых гениальный композитор выбирал на его .взгляд необходимое. Такой универсум художественного творчества весьма отличен от классического образа мира, но он легко соотносим с современной физикой и космологией. Вырисовываются контуры новой рациональности, к которой ведет идея нестабильности. Эта идея кладет конец претензиям на абсолютный контроль над какой-либо сферой реальности, кладет конец любым возможным мечтаниям об абсолютно контролируемом обществе. Реальность вообще не контролируема в смысле, который был провозглашен прежней наукой.

Повествование в науке

Современная наука в целом становится все более нарративной. Прежде существовала четкая дихотомия: социальные, по-преимуществу нарративные науки — с одной стороны, и собственно наука, ориентированная на поиск законов природы, — с другой. Сегодня эта дихотомия разрушается.

В прежней идеологии науки уникальные события — будь то зарождение жизни или зарождение мироздания — представлялись почти антинаучно. Это можно проиллюстрировать известным рассказом Айзека Азимова. Высокоразвитая цивилизация спрашивает компьютер о том, как опровергнуть второе начало термодинамики. Компьютер ссылается на недостаток исходных данных и начинает расчеты, которые длятся миллионы и миллионы лет, пока не исчезает все, кроме гигантского считающего компьютера, извлекающего данные непосредственно из пространства-времени. Наконец, компьютер уясняет, как опровергнуть второе начало. В тот же момент рождается новый мир. Сегодня, однако, мы лучше понимаем, каким образом элемент повествования (или элемент события) входит в наше видение природы.

Согласно известной формуле Фрейда, история науки есть история прогрессирующего отчуждения — открытия Галилея продемонстрировали, что человек не является центром планетарной системы, Дарвин показал, что человек — всего лишь одна из многочисленных биологических особей, населяющих землю, а сам Фрейд обнаружил, что даже наше собственное сознание является лишь частью объемлющего его бессознательного. Аналогичную идею о том, что история науки представляет собой не что иное, как отчуждение, мы обнаруживаем также в одной из работ Жака Моно. Однако обсуждаемые в данной статье представления о реальности предполагают обратное: в мире, основанном на нестабильности и созидательности, человечество опять оказывается в самом центре законов мироздания.

Такое понимание мироздания становится важным фактором, способствующим окончанию эпохи культурной раздробленности цивилизации. Например, в Китае была развита впечатляющая наука, никогда, однако, не касавшаяся вопроса о том, как падает камень, — идея законов природы в том юридически-правовом смысле, в каком мы их понимаем, была чужда китайской цивилизации. Для китайца Вселенная представляла собой когерентное образование, где все события взаимосвязаны. Я надеюсь, что наука будущего, сохраняя аналитическую точность ее западного варианта, будет заботиться и о глобальном, целостном взгляде на мир. Тем самым перед ней откроются перспективы выхода за пределы, поставленные классической культурой Запада.

Риск и ответственность

В детерминистическом мире риск отсутствует, ибо риск есть лишь там, где универсум открывается как нечто многовариантное, подобное сфере человеческого бытия. Я не имею возможности детально обсуждать здесь эту проблему, но представляется очевидным, что именно такое, многовариантное видение мира, положенное в основание науки, с необходимостью раскрывает перед человечеством возможность выбора — выбора, означающего, между прочим, и определенную этическую ответственность. Когда-то Валери совершенно правильно, на мой взгляд, отметил, что "время — это конструкция". Действительно, время не является чем-то готовым, предстающим в завершенных формах перед гипотетическим сверхчеловеческим разумом. Нет! Время — это нечто такое, что конструируется в каждый данный момент. И человечество может принять участие в процессе этого конструирования.

Цитата:
Сообщение от vengeance Посмотреть сообщение
На данный вопрос, имхо, лучше всего отвечает теория Эверетта. Но для понимания её сути крайне желательны хотя бы базовые представления о квантовой механике.



Теорема Белла показывает, что как при наличии в квантово-механической теории скрытого параметра, влияющего на любую физическую характеристику квантовой частицы, так и при отсутствии такового можно провести серийный эксперимент, статистические результаты которого подтвердят или опровергнут наличие скрытых параметров в квантово-механической теории.

Сам эксперимент выглядит так:
под внешним воздействием атом синхронно испускает две частицы, например два фотона, причем в противоположных направлениях. После этого нужно уловить эти частицы и инструментально определить направление спина каждой и сделать это тысячекратно, чтобы накопить достаточную статистику для подтверждения или опровержения существования скрытого параметра по теореме Белла (выражаясь языком математической статистики, нужно рассчитать коэффициенты корреляции).

Когда в начале 1970-х годов результаты экспериментов были обобщены, всё стало предельно ясно. Волновая функция распределения вероятностей совершенно безошибочно описывает движение частиц от источника к датчику. Следовательно, уравнения волновой квантовой механики не содержат скрытых переменных. Это единственный известный случай в истории науки, когда блестящий теоретик доказал возможность экспериментальной проверки гипотезы и дал обоснование метода такой проверки, блестящие экспериментаторы титаническими усилиями провели сложный, дорогостоящий и затяжной эксперимент, который в итоге лишь подтвердил и без того господствующую теорию и даже не внес в нее ничего нового, в результате чего все почувствовали себя жестоко обманутыми в ожиданиях!
(Цитата из научного издания)
У меня сразу несколько вопросов. Понимаю, что они дилетантские, но понять все равно хочется.

Что такое "скрытый параметр"?
Чего именно все ожидали и почувствовали себя обманутыми?
Здесь речь идет о 70-х годах. А Аспект поставил свой эксперимент 1982 году. Что нового он обнаружил по сравнению с вышеописанным?
Каковы следствия и выводы из теоремы Белла?

И самое главное - как соотносится концепция нелокальности с классической физикой? Что это значит: "частица оказывается сразу в двух местах"? Я действительно не могу этого понять.

Лучше зажечь одну маленькую свечку, чем проклинать темноту (Конфуций)

Последний раз редактировалось Mice; 29.10.2008 в 17:44.. Причина: Обединил 3 сообщения.
Catriana вне форума   Ответить с цитированием
Старый 29.10.2008, 16:40 Вверх     #2
vengeance
Лучший Друг Форума
 
Аватар для vengeance
 
   Возраст: 50
Регистрация: 15.06.2007
Был(а) у нас: 10.11.2009 08:08
Сообщений: 1,046

Пол: Мужской
По умолчанию

Цитата:
Сообщение от Catriana Посмотреть сообщение
У меня сразу несколько вопросов. Понимаю, что они дилетантские, но понять все равно хочется.
Что такое "скрытый параметр"?
Имеется ввиду некий гипотетический фактор, технологически экспериментально необнаружаемый на текущий момент, но оказывающий влияние на предмет эксперимента. Про бозон Хиггса слышали?
Цитата:
Сообщение от Catriana Посмотреть сообщение
Чего именно все ожидали и почувствовали себя обманутыми?
Ожидали, вероятно, опровержения уравнения Шрёдингера, ну или чего-то подобного.

Цитата:
Сообщение от Catriana Посмотреть сообщение
Здесь речь идет о 70-х годах. А Аспект поставил свой эксперимент 1982 году. Что нового он обнаружил по сравнению с вышеописанным?
Каковы следствия и выводы из теоремы Белла?
В общем, то-же самое, просто более точно и достоверно.

Цитата:
Сообщение от Catriana Посмотреть сообщение
И самое главное - как соотносится концепция нелокальности с классической физикой? Что это значит: "частица оказывается сразу в двух местах"? Я действительно не могу этого понять.
Осмелюсь привести цитату Шрёдингера:
Цитата:
«Если две системы, состояния которых нам известны, временно вступают в физическое взаимодействие, а затем разделяются вновь, то их уже нельзя описывать прежним образом, то есть утверждать, что каждая система пребывает в своем собственном состоянии.

Я считаю это обстоятельство самой характерной чертой квантовой механики, разделяющей ее и классическую науку. Благодаря временному взаимодействию ранее независимые системы становятся спутанными»
Понятно, что физика Ньютона в квантовом мире неприменима. Однако это её никак не отменяет и не компрометирует.

ЗЫ: Кстати, весьма вероятно, что уже через несколько месяцев, как только БАК заработает в штатном режиме, мы получим гораздо более полные ответы на все эти вопросы.
vengeance вне форума   Ответить с цитированием
Старый 29.10.2008, 16:54 Вверх     #3
Catriana
Лучший Друг Форума
 
Аватар для Catriana
 
  
Регистрация: 14.12.2007
Был(а) у нас: 13.07.2020 11:31
Сообщений: 1,726

Пол: Женский
По умолчанию

Цитата:
Сообщение от vengeance Посмотреть сообщение

Осмелюсь привести цитату Шрёдингера:

«Если две системы, состояния которых нам известны, временно вступают в физическое взаимодействие, а затем разделяются вновь, то их уже нельзя описывать прежним образом, то есть утверждать, что каждая система пребывает в своем собственном состоянии.

Я считаю это обстоятельство самой характерной чертой квантовой механики, разделяющей ее и классическую науку. Благодаря временному взаимодействию ранее независимые системы становятся спутанными»
Не поняла, почему именно это называется самой характерной чертой квантовой физики, а не, скажем, термодинамики или химии.
Если два вещества вступят в химическую реакцию, их тоже нельзя будет описывать прежним образом. Если какое-то горючее вещество вступит во взаимодействие с огнем - то же самое.

Но я по-прежнему не понимаю, как это связано с тем, что одна и также частица находится одновременно в двух местах.

Цитата:
Понятно, что физика Ньютона в квантовом мире неприменима. Однако это её никак не отменяет и не компрометирует.
Это ограничивает область ее действия достаточно локальными рамками. И теми же рамками ограничивается модель мироздания, основанная на ньютонианско-картезианской модели.

Цитата:
ЗЫ: Кстати, весьма вероятно, что уже через несколько месяцев, как только БАК заработает в штатном режиме, мы получим гораздо более полные ответы на все эти вопросы.
Что ж, будем ждать.

Лучше зажечь одну маленькую свечку, чем проклинать темноту (Конфуций)
Catriana вне форума   Ответить с цитированием
Старый 29.10.2008, 17:14 Вверх     #4
vengeance
Лучший Друг Форума
 
Аватар для vengeance
 
   Возраст: 50
Регистрация: 15.06.2007
Был(а) у нас: 10.11.2009 08:08
Сообщений: 1,046

Пол: Мужской
По умолчанию

Цитата:
Сообщение от Catriana Посмотреть сообщение
Не поняла, почему именно это называется самой характерной чертой квантовой физики, а не, скажем, термодинамики или химии.
Если два вещества вступят в химическую реакцию, их тоже нельзя будет описывать прежним образом. Если какое-то горючее вещество вступит во взаимодействие с огнем - то же самое.

Но я по-прежнему не понимаю, как это связано с тем, что одна и также частица находится одновременно в двух местах.
Боюсь, что человеку, далёкому от физики, этого так не объяснишь. Вот тут неплохая популяризаторская статейка на заданную тему. Там вроде более-менее доступно объяснено.
vengeance вне форума   Ответить с цитированием
Старый 29.10.2008, 18:06 Вверх     #5
Catriana
Лучший Друг Форума
 
Аватар для Catriana
 
  
Регистрация: 14.12.2007
Был(а) у нас: 13.07.2020 11:31
Сообщений: 1,726

Пол: Женский
По умолчанию

Цитата:
Сообщение от vengeance Посмотреть сообщение
Боюсь, что человеку, далёкому от физики, этого так не объяснишь. Вот тут неплохая популяризаторская статейка на заданную тему. Там вроде более-менее доступно объяснено.

Спасибо, статья очень интересная.
А можно ли объяснить человеку, далекому от физики, как осуществляется этот самый мгновенный квантовый инфообмен? Если он основан не на привычных способах передачи информации, которые не могут превышать сверхсветовой скорости, то на каких?
И еще вопрос: могут ли находиться одновременно в двух местах только две частицы, или это возможно и для, скажем, двух атомов или молекул?

И как все же относится научный мир к теории Прибрама?

Лучше зажечь одну маленькую свечку, чем проклинать темноту (Конфуций)
Catriana вне форума   Ответить с цитированием
Старый 29.10.2008, 18:31 Вверх     #6
Catriana
Лучший Друг Форума
 
Аватар для Catriana
 
  
Регистрация: 14.12.2007
Был(а) у нас: 13.07.2020 11:31
Сообщений: 1,726

Пол: Женский
По умолчанию Предисловие к книге "Порядок из хаоса"

Современная западная цивилизация достигла необычайных высот в искусстве расчленения целого на части, а именно в разложении на мельчайшие компоненты. Мы изрядно преуспели в этом искусстве, преуспели настолько, что нередко забываем собрать разъятые части в то единое целое, которое они некогда составляли.

Особенно изощренные формы искусство разложения целого на составные части приняло в науке. Мы имеем обыкновение не только вдребезги разбивать любую проблему на осколки размером в байт* или того меньше, но и нередко вычленяем такой осколок с помощью весьма удобного трюка. Мы произносим: «Ceteris paribus»**, и это заклинание позволяет нам пренебречь сложными взаимосвязями между интересующей нас проблемой и прочей частью Вселенной.

У Ильи Пригожина, удостоенного в 1977 г. Нобелевской премии за работы по термодинамике неравновесных систем, подход к решению научных проблем, основанный только на расчленении целого на части, всегда вызывал неудовлетворенность. Лучшие годы своей жизни Пригожин посвятил воссозданию целого из составных частей, будь то биология и физика, необходимость и случайность, естественные и гуманитарные науки.


* Байт — структурная единица машинного слова, состоящая обычно из 8 двоичных разрядов (битов) и используемая как единое целое при обработке янформации. — Прим перев.

** При прочих равных (лат.) — Прим. перев.



Илья Романович Пригожин родился 25 января 1917г. в Москве. С десятилетнего возраста живет в Бельгии.

Невысокого роста, с седой головой и четко высеченными чертами лица, он, подобно лазерному лучу, представляет собой сгусток энергии. Живо интересуясь археологией и изобразительным искусством, Пригожин привносит в естественные науки разносторонность и универсальность, свойственные лишь недюжинным умам. Вместе с женой Мариной, по профессии инженером, и сыном Паскалем Пригожин живет в Брюсселе, где возглавляет группу представителей различных наук, занимающихся развитием и применением его идей в столь, казалось бы, далеких областях, как, например, изучение коллективного поведения муравьев, химических реакций в системах с диффузией и диссипативных процессов в квантовой теории поля.

Ежегодно Илья Пригожин проводит несколько месяцев в руководимом им Центре по статистической механике и термодинамике при Техасском университете в г. Остин. Для Пригожина было большой радостью и неожиданностью узнать, что за работы по диссипативным структурам, возникающим в неравновесных системах в результате протекания нелинейных процессов, ему присуждена Нобелевская премия. Книга «Порядок из хаоса» написана Пригожиным в соавторстве с Изабеллой Стенгерс, философом, химиком и историком науки, одно время работавшей в составе Брюссельской группы. Ныне Изабелла Стенгерс живет в Париже и сотрудничает с музеем де ля Виллет.

Книга «Порядок из хаоса» примечательна во многих отношениях. Она спорна и будоражит воображение читателя, изобилует блестящими прозрениями и догадками, подрывающими уверенность в состоятельности наших основополагающих представлений и открывающими новые пути к их осмыслению.

Выход в 1979 г. французского варианта книги Пригожина и Стенгерс под названием «Новый альянс» («La nouvelle alliance») вызвал весьма оживленную дискуссию, в которой приняли участие выдающиеся представители различных областей науки и культуры, в том числе и столь далеких, как энтомология и литературная критика.

Тот факт, что английского варианта книги И. Пригожина и И. Стенгерс, изданной или подготавливаемой к изданию на двенадцати языках, пришлось ждать так долго, красноречиво свидетельствует об оторванности англоязычного мира. Впрочем, столь длительная задержка имеет и свою положительную сторону: в книге «Порядок из хаоса» нашли отражение новейшие идеи Пригожина, в частности его подход ко второму началу термодинамики, которое он сумел увидеть в совершенно ином свете, чем его предшественники.

Все это позволяет считать работу «Порядок из хаоса» не просто еще одной книгой, а своеобразным стимулом, побуждающим нас к критическому пересмотру целей науки, методов и теоретико-познавательных установок — всего научного мировоззрения. Книгу Пригожина и Стенгерс можно рассматривать как символ происходящих в наше время исторических преобразований в науке, игнорировать которые не может ни один просвещенный человек.

Некоторые ученые рисуют картину мира науки как приводимую в действие своей собственной внутренней логикой и развивающуюся по своим собственным законам в полной изоляции от окружающего мира. В этой связи нельзя не заметить, что многие научные гипотезы, теории, метафоры и модели (не говоря уже о решениях, принимаемых учеными всякий раз, когда перед ними встает проблема выбора: стоит ли заняться исследованием той или иной проблемы или предпочтительнее оставить ее без внимания) формируются под влиянием экономических, культурных и политических факторов, действующих за стенами лаборатории.

Я отнюдь не утверждаю, что между экономическим и политическим строем общества и господствующим научным мировоззрением, или «парадигмой», существует тесная параллель. Еще в меньшей степени я склонен считать, как это делают марксисты, науку надстройкой над общественно-экономическим базисом. Вместе с тем было бы неверно рассматривать науку как своего рода независимую переменную. Наука представляет собой открытую систему, которая погружена в общество и связана с ним сетью обратных связей. Наука испытывает на себе сильнейшее воздействие со стороны окружающей ее внешней среды, и развитие науки, вообще говоря, определяется тем, насколько культура восприимчива к научным идеям.

Возьмем хотя бы совокупность идей и взглядов, сложившихся в XVII и XVIII вв. под общим названием классической науки, или ньютонианства. Приверженцы классической науки рисовали картину мира, в которой любое событие однозначно определяется начальными условиями, задаваемыми (по крайней мере в принципе) абсолютно точно. В таком мире не было места случайности, все детали его были тщательно подогнаны и находились «в зацеплении», подобно шестерням некоей космической машины.

Широкое распространение механистического мировоззрения совпало с расцветом машинной цивилизации. Бог, играющий в кости*, был плохо совместим с машинным веком, который с энтузиазмом воспринимал научные теории, изображавшие Вселенную как своего рода гигантский механизм.

Именно механистическое мировоззрение лежит в основе знаменитого изречения Лапласа о том, что существо, способное охватить всю совокупность данных о состоянии Вселенной в любой момент времени, могло бы не только точно предсказать будущее, но и до мельчайших подробностей восстановить прошлое. Представление о простой и однородной механической Вселенной не только оказало решающее воздействие на ход развития науки, но и оставило заметный отпечаток на других областях человеческой деятельности. Оно явно довлело над умами творцов американской конституции, разработавших структуру государственной машины, все звенья которой должны были действовать с безотказностью и точностью часового механизма. Меттерних, настойчиво проводивший в жизнь свой план достижения политического равновесия в Европе, отправляясь в очередной дипломатический вояж, неизменно брал с собой в дорогу сочинения Лапласа. Необычайно быстрое развитие фабричной цивилизации с ее огромными грохочущими машинами, блестящими достижениями инженерной мысли, строительством железных дорог, созданием новых отраслей промышленности (таких, как сталелитейная, текстильная, автомобильная) — все это, казалось бы, лишь подтверждало правильность представления о Вселенной как о гигантской заводной игрушке.

* Имеется в виду знаменитое выражение Эйнштейна «Бог не играет в кости» («God casts the die, not the dice»). — Прим. перев.






Однако ныне машинный век горестно оплакивает свой конец, если только столь антропоморфный термин применим к векам (что касается нашего века, то к нему этот термин применим в полной мере). Закат индустриального века с особой наглядностью продемонстрировал ограниченность механистической модели реальности.

Разумеется, многие слабые стороны механистической модели были обнаружены задолго до нас. Представление о мире как о часовом механизме с планетами, извечно обращающимися по неизменным орбитам, детерминированным поведением любых равновесных систем и действующими на все без исключения объекты универсальными законами, которые могут быть открыты внешним наблюдателем, — такая модель с самого начала подверглась уничтожающей критике.

В начале XIX в. термодинамика поставила под сомнение вневременной характер механистической картины мира. «Если бы мир был гигантской машиной, — провозгласила термодинамика, — то такая машина неизбежно должна была бы остановиться, так как запас полезной энергии рано или поздно был бы исчерпан». Мировые часы не могли идти вечно, и время обретало новый смысл. Вскоре после этого последователи Дарвина выдвинули противоположную идею. По их мнению, хотя мировая машина, расходуя энергию и переходя из более организованного в менее организованное состояние, и могла замедлять свой ход и даже останавливаться, тем не менее биологические системы должны развиваться только по восходящей линии, переходя из менее организованного в более организованное состояние.

В начале XX в. Эйнштейну понадобилось поместить наблюдателя внутрь системы. Мировая машина стала выглядеть по-разному (и со всех практически важных точек зрения действительно различной) в зависимости от того, где находится наблюдатель. Вместе с тем она по-прежнему оставалась детерминистической машиной. Бог еще не приступал к игре в кости. Несколько позднее физики, работавшие в области квантовой механики, и в частности занимавшиеся соотношением неопределенности, предприняли массированное наступление на детерминистическую модель. Они кололи ее острыми копьями, били по ней тяжкими молотами, пытались подорвать динамитом.

И все же, несмотря на все оговорки, пробелы и недостатки, механистическая парадигма и поныне остается для физиков «точкой отсчета» (о чем необходимо сказать со всей ясностью и определенностью, как это и делают Пригожин и Стенгерс), образуя центральное ядро науки в целом. Оказываемое ею и поныне влияние столь сильно, что подавляющее большинство социальных наук, в особенности экономика, все еще находится в ее власти.

Значение книги «Порядок из хаоса» состоит в том, что ее авторы не только находят новые аргументы для критики ньютоновской модели, но и показывают, что претензии ньютонианства на объяснение реальности,— и поныне не утратившие силу, хотя и ставшие значительно более умеренными, — совместимы с гораздо более широкой современной картиной мира, созданной усилиями последующих поколений ученых. Пригожин и Стенгерс показывают, что так называемые «универсальные законы» отнюдь не универсальны, а применимы лишь к локальным областям реальности. Именно к этим областям наука приложила наибольшие усилия.

Суть приводимых Пригожиным и Стенгерс аргументов можно было бы резюмировать следующим образом. Авторы книги «Порядок из хаоса» показывают, что в машинный век традиционная наука уделяет основное внимание устойчивости, порядку, однородности и равновесию. Она изучает главным образом замкнутые системы и линейные соотношения, в которых малый сигнал на входе вызывает равномерно во всей области определения малый отклик на выходе.

Неудивительно, что при переходе от индустриального общества с характерными для него огромными затратами энергии, капитала и труда к обществу с высокоразвитой технологией, для которого критическими ресурсами являются информация и технологические нововведения, неминуемо возникают новые научные модели мира.

Пригожинская парадигма особенно интересна тем, что она акцентирует внимание на аспектах реальности, наиболее характерных для современной стадии ускоренных социальных изменений: разупорядоченности, неустойчивости, разнообразии, неравновесности, нелинейных соотношениях, в которых малый сигнал на входе может вызвать сколь угодно сильный отклик на выходе, и темпоральности — повышенной чувствительности к ходу времени.

Не исключено, что работы Пригожина и его коллег в рамках так называемой Брюссельской школы знаменуют очередной этап научной революции, поскольку речь идет о начале нового диалога не только с природой, но и с обществом.

Идеи Брюссельской школы, существенно опирающиеся на работы Пригожина, образуют новую, всеобъемлющую теорию изменения.

В сильно упрощенном виде суть этой теории сводится к следующему. Некоторые части Вселенной действительно могут действовать как механизмы. Таковы замкнутые системы, но они в лучшем случае составляют лишь малую долю физической Вселенной. Большинство же систем, представляющих для нас интерес, открыты — они обмениваются энергией или веществом (можно было бы добавить: и информацией) с окружающей средой. К числу открытых систем, без сомнения, принадлежат биологические и социальные системы, а это означает, что любая попытка понять их в рамках механистической модели заведомо обречена на провал.

Кроме того, открытый характер подавляющего большинства систем во Вселенной наводит на мысль о том, что реальность отнюдь не является ареной, на которой господствует порядок, стабильность и равновесие: главенствующую роль в окружающем нас мире играют неустойчивость и неравновесность.

Если воспользоваться терминологией Пригожина, то можно сказать, что все системы содержат подсистемы, которые непрестанно флуктуируют. Иногда отдельная флуктуация или комбинация флуктуации может стать (в результате положительной обратной связи) настолько сильной, что существовавшая прежде организация не выдерживает и разрушается. В этот переломный момент (который авторы книги называют особой точкой или точкой бифуркации) принципиально невозможно предсказать, в каком направлении будет происходить дальнейшее развитие: станет ли состояние системы хаотическим или она перейдет на новый, более дифференцированный и более высокий уровень упорядоченности
или организации, который авторы называют диссипативной структурой. (Физические или химические структуры такого рода получили название диссипативных потому, что для их поддержания требуется больше энергии, чем для поддержания более простых структур, на смену которым они приходят.)

Один из ключевых моментов в острых дискуссиях, развернувшихся вокруг понятия диссипативной структуры, связан с тем, что Пригожин подчеркивает возможность спонтанного возникновения порядка и организации из беспорядка и хаоса в результате процесса самоорганизации.

Чтобы понять суть этой чрезвычайно плодотворной идеи, необходимо прежде всего провести различие между системами равновесными, слабо неравновесными и сильно неравновесными.

Представим себе некое племя, находящееся на чрезвычайно низкой ступени развития. Если уровни рождаемости и смертности сбалансированы, то численность племени остается неизменной. Располагая достаточно обильными источниками пищи и других ресурсов, такое племя входит в качестве неотъемлемой составной части в локальную систему экологического равновесия. Теперь допустим, что уровень рождаемости повысился. Небольшое преобладание рождаемости над смертностью не оказало бы заметного влияния на судьбу племени. Вся система перешла бы в состояние, близкое к равновесному.

Но представим себе, что уровень рождаемости резко возрос. Тогда система оказалась бы сдвинутой в состояние, далекое от равновесия, и на первый план выступили бы нелинейные соотношения. Находясь в таком состоянии, системы ведут себя весьма необычно. Они становятся чрезвычайно чувствительными к внешним воздействиям. Слабые сигналы на входе системы могут порождать значительные отклики и иногда приводить. к неожиданным эффектам. Система в целом может перестраиваться так, что ее поведение кажется нам непредсказуемым.

Многочисленные примеры такого рода самоорганизации читатель найдет на страницах книги Пригожина и Стенгерс. Молекулярный механизм отвода тепла в подогреваемой снизу жидкости при переходе градиента температур через некоторый порог внезапно сменяется конвекцией, существенно перестраивающей движение жидкости, и миллионы молекул, как по команде, образуют шестиугольные ячейки.

Еще более впечатляющее зрелище представляют собой описанные Пригожиным и Стенгерс «химические часы». Представим себе миллион белых шариков для игры в настольный теннис, перемешанных случайным образом с миллионом таких же черных шариков, хаотически прыгающих в огромном ящике, в стенке которого имеется стеклянное окошко. Глядя в него, наблюдатель будет в основном видеть серую массу, но время от времени (в зависимости от распределения шариков вблизи окошка в момент наблюдения) масса за стеклом будет казаться ему то черной, то белой.

Представьте себе теперь, что масса шариков за стеклом через равные промежутки времени («как по часам») попеременно то белеет, то чернеет.

Почему все черные и все белые шарики внезапно организуются так, чтобы попеременно уступать место у окошка шарикам другого цвета?

По всем правилам классической науки ничего подобного происходить не должно. Тем не менее стоит лишь отказаться от шариков для пинг-понга (приведенных лишь для большей наглядности) и обратиться к примеру с молекулами, участвующими в некоторых химических реакциях, как мы сразу же обнаружим, что такого рода самоорганизация, или упорядочение, может происходить и действительно происходит не так, как учат классическая физика и статистическая физика Больцмана.

В состояниях, далеких от равновесия, происходят и другие спонтанные, нередко весьма значительные перераспределения материи во времени и в пространстве. Если мы перейдем от одномерного пространства к двухмерному или трехмерному, то число возможных типов диссипативных структур резко возрастет, а сами структуры станут необычайно разнообразными.

В дополнение к сказанному нельзя не упомянуть еще об одном открытии. Представим себе, что в ходе химической реакции или какого-то другого процесса вырабатывается фермент, присутствие которого стимулирует производство его самого. Специалисты по вычислительной математике и технике говорят в таких случаях о петле положительной обратной связи. В химии аналогичное явление принято называть автокатализом. В неорганической химии автокаталитические реакции встречаются редко, но, как показали исследования по молекулярной биологии последних десятилетий, петли положительной обратной связи (вместе с ингибиторной, или отрицательной, обратной связью и более сложными процессами взаимного катализа) составляют самую основу жизни. Именно такие процессы позволяют объяснить, каким образом совершается переход от крохотных комочков ДНК к сложным живым организмам.

Обобщая, мы можем утверждать, что в состояниях, далеких от равновесия, очень слабые возмущения, или флуктуации, могут усиливаться до гигантских волн, разрушающих сложившуюся структуру, а это проливает свет на всевозможные процессы качественного или резкого (не постепенного, не эволюционного) изменения. Факты, обнаруженные и понятые в результате изучения сильно неравновесных состояний и нелинейных процессов, в сочетании с достаточно сложными системами, наделенными обратными связями, привели к созданию совершенно нового подхода, позволяющего установить связь фундаментальных наук с «периферийными» нау*ами о жизни и, возможно, даже понять некоторые социальные процессы.

(Факты, о которых идет речь, имеют не меньшее, если не большее, значение для социальных, экономических или политических реальностей. Такие слова, как «революция», «экономический кризис», «технологический сдвиг» и «сдвиг парадигмы», приобретают новые оттенки, когда мы начинаем мыслить о соответствующих понятиях в терминах флуктуаций, положительных обратных связей, диссипативных структур, бифуркаций и прочих элементов концептуального лексикона школы Пригожина.) Именно такие широкие перспективы открываются перед нами при чтении книги «Порядок из хаоса».

Помимо всего сказанного в книге Пригожина и Стенгерс затронута еще более головоломная проблема, возникающая буквально на каждом шагу, — проблема времени.

Пересмотр понятия времени — неотъемлемая составная часть грандиозной революции, происходящей в современной науке и культуре. Важность проблемы времени делает уместным небольшое отступление, которое мы совершим прежде, чем переходить к оценке роли Пригожина в ее решении.

В качестве примера возьмем историю. Одним из наиболее значительных вкладов в историографию явились. предложенные Броделем* три временные шкалы. В шкале географического времени длительность событий измеряется в эпохах, или эонах. Гораздо мельче шкала социального времени, используемая при измерении продолжительности событий в экономике, истории отдельных государств и цивилизаций. Еще мельче шкала индивидуального времени — истории событий в жизни того или иного человека.

В социальных науках время, по существу, остается огромным белым пятном. Из антропологии известно, сколь сильно отличаются между собой представления о времени различных культур. В одних культурах время циклично — история состоит из бесконечных повторений одной и той же цепи событий. В других культурах, включая и нашу собственную, время — дорога, проторенная между прошлым и будущим, по которой идут народы и общества. Встречаются и такие культуры, в которых человеческая жизнь считается стационарной во времени: не мы приближаемся к будущему, а будущее приближается к нам.

Мне уже доводилось писать о том, что каждое общество питает определенное, характерное лишь для него временное пристрастие — в зависимости от того, в какой мере оно акцентирует свое внимание на прошлом, настоящем или будущем. Одно общество живет прошлым, другое может быть целиком поглощено будущим.

Кроме того, каждая культура и каждая личность имеют обыкновение мыслить в терминах временных горизонтов. Одни из нас сосредоточили все помыслы лишь на том, что происходит в данный момент, сейчас. Например, политических деятелей часто критикуют за то, что они не видят дальше собственного носа. О таких деятелях говорят, что их временной горизонт ограничен датой ближайших выборов. Другие из нас предпочитают строить далекие планы. Столь различные временные го*ризонты — один из важнейших, хотя и часто упускаемый из виду, источников социальных и экономических трений.

* Бродель Фернан (род. 1902 г.) — французский историк. — Прим. перев.



Несмотря на растущее сознание различий в культурных концепциях времени, социальные науки внесли незначительный вклад в создание самосогласованной теории времени. Такая теория могла бы охватить многие дисциплины — от политики до динамики социальных групп и психологии общения. Она могла бы учитывать, например, то, что в книге «Столкновение с будущим» («Future Shock») я назвал предвкушением длительности, — индуцированные нашей культурой предположительные оценки длительности того или иного процесса.

Например, мы довольно рано узнаем, что зубы полагается чистить в течение нескольких минут, а не все утро или что, когда папа уходит на работу, он возвращается часов через восемь и что обед может длиться минуты или часы, но отнюдь не год. (Телевидение с его разбиением программ на получасовые и часовые интервалы тонко формирует наши представления о длительности. Обычно мы не без основания ожидаем, что герой мелодрамы встретит свою возлюбленную, завладеет богатством или выиграет сражение в последние пять минут телепередачи. В США мы интуитивно прогнозируем через определенные промежутки времени перерывы в телевизионных передачах для показа рекламных объявлений.) Наш разум заполнен подобными прогнозами длительности. Разумеется, прогнозы детского разума во многом отличаются от прогнозов разума взрослого человека, полностью адаптировавшегося к социальной среде, и эти различия также являются источником конфликта.

Дети в индустриальном обществе обладают временной тренированностью: они умеют обращаться с часами и рано научаются различать довольно малые отрезки времени (вспомним хотя бы хорошо знакомую всем ситуацию, когда родители говорят ребенку: «Через три минуты ты должен быть в постели!»). Столь тонко развитое чувство времени нередко отсутствует в аграрном обществе с его замедленными темпами, не требующими столь скрупулезно расписанного по минутам плана на день, как наше вечно спешащее общество.

Понятия, соответствующие социальной и индивидуальной временным шкалам Броделя, не были подвергнуты систематическому анализу в социальных науках. Не предпринималось и сколько-нибудь значительных попыток «состыковать» их с нашими естественнонаучными теориями времени, хотя такие понятия не могут не быть связанными с нашими исходными допущениями о физической реальности. Последнее замечание вновь возвращает нас к Пригожину, которого понятие времени неудержимо влекло к себе с детских лет. Как-то Пригожин сообщил мне, что еще в бытность свою студентом был поражен вопиющими противоречиями в естественнонаучном подходе к проблеме времени и эти противоречия стали отправным пунктом всей его дальнейшей деятельности.

В модели мира, построенной Ньютоном и его последователями, время выступало как своего рода придаток. Для создателей ньютоновской картины мира любой момент времени в настоящем, прошлом и будущем был неотличим от любого другого момента времени. Планеты могли обращаться вокруг Солнца (часы или какой-нибудь другой простой механизм — идти) как вперед, так и назад по времени, ничего не изменяя в самих основах ньютоновской системы. Именно поэтому в научных кругах за временем в ньютоновской системе закрепилось название обратимого времени.

В XIX в. центр интересов физиков переместился с динамики на термодинамику. После того как было сформулировано второе начало термодинамики, всеобщее внимание неожиданно оказалось прикованным к понятию времени. Дело в том, что согласно второму началу термодинамики запас энергии во Вселенной иссякает, а коль скоро мировая машина сбавляет обороты, неотвратимо приближаясь к тепловой смерти, ни один момент времени не тождествен предшествующему. Ход событий во Вселенной невозможно повернуть вспять, дабы воспрепятствовать возрастанию энтропии. События в целом невоспроизводимы, а это означает, что вре*мя обладает направленностью, или, если воспользоваться выражением Эддингтона, существует стрела времени. Вселенная стареет, а коль скоро это так, время как бы представляет собой улицу с односторонним движением. Оно утрачивает обратимость и становится необратимым.

Не вдаваясь в детали, можно утверждать, что возникновение термодинамики привело естествознание к глубокому расколу в связи с проблемой времени. Более того, даже те, кто считал время необратимым, вскоре разделились на два лагеря. Если запас энергии в системе тает, рассуждали они, то способность системы поддерживать организованные структуры ослабевает, отсюда высокоорганизованные структуры распадаются на менее организованные, которые в большей мере наделены случайными элементами. Не следует забывать, однако, что именно организация наделяет систему присущим ей разнообразием. По мере того как иссякает запас энергии и возрастает энтропия, в системе нивелируются различия. Следовательно, второе начало термодинамики предсказывает все более однородное будущее (прогноз с чисто человеческой точки зрения весьма пессимистический).

Обратимся теперь к проблемам, поднятым Дарвином и его последователями. Считалось, что эволюция отнюдь не приводит к понижению уровня организации и обеднению разнообразия форм. Наоборот, эволюция развивается в противоположном направлении: от простого к сложному, от низших форм жизни к высшим, от недифференцированных структур к дифференцированным. С человеческой точки зрения, такой прогноз весьма оптимистичен. Старея, Вселенная обретает все более тонкую организацию. Со временем уровень организации Вселенной неуклонно повышается.

В указанном выше смысле взгляды приверженцев второго начала термодинамики и дарвинистов по поводу временных изменений во Вселенной уместно охарактеризовать как противоречие в противоречии.

Стремление разрешить эти старые парадоксы приводит Пригожина и Стенгерс к следующим вопросам: «какова специфическая структура динамических систем, позволяющая им «отличать прошлое от будущего»? Каков необходимый для такого различения минимальный уровень сложности»?

Ответ, к которому приходят Пригожин и Стенгерс, сводится к следующему. Стрела времени проявляет себя лишь в сочетании со случайностью. Только в том случае, когда система ведет себя достаточно случайным образом, в ее описании возникает различие между прошлым и будущим и, следовательно, необратимость.

В классической, или механистической, науке исходным рубежом событий служат начальные условия. Атомы или частицы движутся по мировым линиям, или траекториям. Задав начальные условия, мы можем выпустить из исходной мировой точки траекторию как назад по времени — в прошлое, так и вперед по времени — в будущее. С совершенно иной ситуацией мы сталкиваемся при рассмотрении некоторых химических реакций, например в случае, когда две жидкости, слитые в один сосуд, диффундируют до тех пор, пока смесь не станет однородной, или гомогенной. Обратная диффузия, которая приводила к разделению смеси на исходные компоненты, никогда не наблюдается. В любой момент времени смесь отличается от той, которая была в сосуде в предыдущий момент и будет в следующий. Весь процесс ориентирован во времени.

В классической науке (по крайней мере на ранних этапах ее развития) такие направленные во времени процессы считались аномалиями, курьезами, обязанными своим происхождением выбору весьма маловероятных начальных условий.

Пригожин и Стенгерс приводят убедительные аргументы, показывающие, что такого рода нестационарные односторонне направленные во времени процессы отнюдь не являются своего рода аберрациями, или отклонениями, от мира с обратимым временем. Гораздо ближе к истине обратное утверждение: редким явлением, или аберрацией с несравненно большим основанием, надлежит считать обратимое время, связанное с замкнутыми системами (если таковые существуют в действительности).

Более того, необратимые процессы являются источником порядка (отсюда и название книги Пригожина и Стенгерс — «Порядок из хаоса»). Тесно связанные с открытостью системы и случайностью, необратимые процессы порождают высокие уровни организации, напри*мер диссипативные структуры.

Именно поэтому одним из лейтмотивов предлагаемой вниманию читателя книги служит новая, весьма необычная интерпретация второго начала термодинамики, предложенная авторами. По мнению Пригожина и Стенгерс, энтропия — не просто безостановочное соскальзывание системы к состоянию, лишенному какой бы то ни было организации. При определенных условиях энтропия становится прародительницей порядка.

Суть предлагаемого авторами подхода к проблеме времени можно охарактеризовать как грандиозный синтез, охватывающий наряду с обратимым и необратимое время и показывающий взаимосвязь того и другого времени не только на уровне макроскопических, но и на уровне микроскопических и субмикроскопических явлений.

Перед нами дерзновенная попытка собрать воедино то, что было разъято на составные части. Аргументация авторов сложна и не всегда доступна пониманию неподготовленного читателя. Но она изобилует свежими идеями, счастливыми догадками и позволяет установить взаимосвязь, казалось бы, разрозненных (и противоречивых) философских понятий.

Дойдя до соответствующего места в книге, мы начинаем осознавать во всем великолепии глубокий синтез, изложенный на ее страницах. Подчеркивая, что необратимое время не аберрация, а характерная особенность большей части Вселенной, Пригожин и Стенгерс подрывают самые основы классической динамики. Для авторов «Порядка из хаоса» выбор между обратимостью и необратимостью не является выбором одной из двух равноправных альтернатив. Обратимость (по крайней мере если речь идет о достаточно больших промежутках времени) присуща замкнутым системам, необратимость — всей остальной части Вселенной.

Показывая, что при неравновесных условиях энтропия может производить не деградацию, а порядок, организацию и в конечном счете жизнь, Пригожин и Стенгерс подрывают и традиционные представления классической термодинамики.

В свою очередь представление об энтропии как об источнике организации означает, что энтропия утрачивает характер жесткой альтернативы, возникающей перед системами в процессе эволюции: в то время как одни системы вырождаются, другие развиваются по восходящей линии и достигают более высокого уровня организации. Такой объединяющий, а не взаимоисключающий подход позволяет биологии и физике сосуществовать, вместо того чтобы находиться в отношении контрадикторной противоположности.

Наконец, нельзя не упомянуть еще об одном синтезе, достигнутом в работе Пригожина и Стенгерс, — установлении ими нового отношения между случайностью и необходимостью.

Роль случайного в окружающем нас мире обсуждается с незапамятных времен — с тех пор, как первобытный охотник споткнулся о подвернувшийся под ноги камень. В Ветхом завете миром безраздельно правит божественная воля. Божественному провидению послушны не только небесные светила, движущиеся по предначертанным орбитам, но и воля всех и каждого из людей. Создатель всего сущего, бог, воплощает в себе первопричину всех явлений. Все происходящее в этом мире заранее предустановлено. О том, как надлежит трактовать божественное предопределение и свободу воли, со времен Блаженного Августина и «Каролингского возрождения» велись ожесточенные споры. В растянувшейся на много веков дискуссии приняли участие Уиклиф*, Гус, Лютер, Кальвин.

Не счесть интерпретаторов, пытавшихся примирить детерминизм со свободой воли. Одно из предложенных ими хитроумных решений проблемы состояло в признании детерминированности всего происходящего в мире божественным предопределением с оговоркой относительно свободы воли индивида. Бог не входит в каждое действие индивида, предоставляя тому некую свободу выбора, в пределах которой тот волен принимать решения по своему усмотрению. Таким образом, свобода воли в нижнем этаже мироздания существует лишь в пределах того «меню», которое обитатель верхнего этажа выбирает на свой вкус.

В «мирской» культуре машинного века жесткий детерминизм в большей или меньшей степени сохранил господствующее положение даже после того, как Гейзенберг и «неопределеонисты», казалось бы, потрясли его основы. Такие мыслители, как Рене Том, и поныне отвергают идею случайности как иллюзорную и глубоко ненаучную. Столкнувшись со столь сильной философской обструкцией, некоторые рьяные сторонники свободы воли, спонтанности и в конечном счете неопределенности, в частности экзистенциалисты, заняли не менее бескомпромиссную позицию. (Например, Сартр считает, что индивид «полностью и всегда свободен», хотя в некоторых своих произведениях признает существование реальных ограничений на такую свободу.)



* Уиклиф (Виклиф) Джон (около 1355—1384 гг.) — английский реформатор, идеолог «бюргерской ереси». — Прим. перев.


Современные представления о случайности и детерминизме изменились в двух отношениях. Прежде всего возросла их сложность. Вот что говорит по этому поводу известный французский социолог Эдгар Морен, ставший специалистом по эпистемологическим проблемам:

«Не следует забывать о том, что за последние сто лет проблема детерминизма претерпела существенные изменения... На смену представлениям о высших, не ведающих индивидуальных различий перманентных законах, безраздельно властвующих над всем происходящим в природе, пришли представления о законах взаимодействия... Но это еще не все: проблема детерминизма превратилась в проблему порядка во Вселенной. Порядок же подразумевает существование в окружающем мире не только «законов», но и чего-то еще: ограничений, инвариантностей, постоянства каких-то соотношений, той или иной регулярности... Стирающий всякие различия, обезличивающий подход старого детерминизма сменился всячески подчеркивающим различия эволюционным подходом, основанным на использовании детерминаций».

По мере того как обогащалась концепция детерминизма, предпринимались все новые и новые усилия для признания сосуществования случайного и необходимого, связанных между собой отношением не подчинения, а равноправного партнерства во Вселенной, в одно и то же время организующей и дезорганизующей себя.

Именно здесь и появляются на сцене Пригожин и Стенгерс. Им удается продвинуться еще на один шаг: они не только доказывают (вполне убедительно для меня, но недостаточно убедительно для критиков, подобных математику Рене Тому), что в окружающем нас мире действуют и детерминизм, и случайность, но и прослеживают, каким образом необходимость и случайность великолепно согласуются, дополняя одна другую.

Согласно теории изменения, проистекающей из понятия диссипативной структуры, когда на систему, находящуюся в сильно неравновесном состоянии, действуют, угрожая ее структуре, флуктуации, наступает критический момент — система достигает точки бифуркации. Пригожин и Стенгерс считают, что в точке бифуркации принципиально невозможно предсказать, в какое состояние перейдет система. Случайность подталкивает то, что остается от системы, на новый путь развития, а после того как путь (один из многих возможных) выбран, вновь вступает в силу детерминизм — и так до следующей точки бифуркации.

Таким образом, в теории Пригожина и Стенгерс случайность и необходимость выступают не как несовместимые противоположности: в судьбе системы случайность и необходимость играют важные роли, взаимно дополняя одна другую.

Достигнут в книге Пригожина и Стенгерс и еще один синтез.

Авторы, несомненно, берут на себя большую смелость, повествуя в рамках единого сюжета об обратимом и необратимом времени, хаосе и порядке, физике и биологии, случайности и необходимости, тщательно оговаривая условия существования взаимосвязей между столь далекими понятиями и областями науки. От рисуемой авторами картины при всей ее спорности веет подлинным величием и мощью.

Но сколь ни дерзок авторский замысел, он далеко не полностью объясняет интерес, питаемый широкой читательской аудиторией к книге «Порядок из хаоса». По моему глубокому убеждению, не меньшее значение имеют глубокие социальные и даже политические обертоны, возникающие под влиянием чтения книги Пригожина и Стенгерс. Подобно тому как ньютоновская модель породила аналогии в политике, дипломатии и других, казалось бы, далеких от науки сферах человеческой деятельности, пригожинская модель также допускает далеко идущие параллели.

Предлагая строгие методы моделирования качественных изменений, Пригожин и Стенгерс позволяют по-новому взглянуть на понятие революции. Объясняя, каким образом иерархия неустойчивостей порождает структурные изменения, авторы «Порядка из хаоса» делают особенно прозрачной теорию организации. Им принадлежит также оригинальная трактовка некоторых психологических процессов, например инновационной деятельности, в которой авторы усматривают связь с «несредним» поведением (nonaverage), аналогичным возникающему в неравновесных условиях.

Еще более важные следствия теория Пригожина и Стенгерс имеет для изучения коллективного поведения. Авторы теории предостерегают против принятия генетических или социобиологических объяснений загадочных или малопонятных сторон социального поведения. Многое из того, что обычно относят за счет действия тайных биологических пружин, в действительности порождается не «эгоистичными» детерминистскими генами, а социальными взаимодействиями в неравновесных условиях.

(Например, в одном из недавно проведенных исследований муравьи подразделялись на две категории: «тружеников» и неактивных муравьев, или «лентяев». Особенности, определяющие принадлежность муравьев к той или другой из двух категорий, можно было бы опрометчиво отнести за счет генетической предрасположенности. Однако, как показали исследования, если разрушить сложившиеся в популяции связи, разделив муравьев на две группы, состоящие соответственно только из «тружеников» и только из «лентяев», то в каждой из групп в свою очередь происходит расслоение на «лентяев» и «тружеников». Значительный процент «лентяев» внезапно превращается в прилежных «тружеников»!)

Не удивительно, что экономисты, специалисты по динамике роста городов, географы, занимающиеся проблемами народонаселения, экологи и представители многих других научных специальностей применяют в своих исследованиях идеи, изложенные в прекрасной книге Пригожина и Стенгерс.

Никто (в том числе и авторы) не в силах извлечь все следствия из столь содержательной и богатой идеями работы, как «Порядок из хаоса». Любого читателя одни места этой замечательной книги заведомо поставят в тупик (некоторые ее страницы слишком специальны для тех, кто не имеет основательной естественнонаучной подготовки), другие — озадачат или послужат стимулом к самостоятельным размышлениям (в особенности если импликации из прочитанного попадают «в цель»). Некоторые утверждения авторов читатель встретит довольно скептически, но в целом «Порядок из хаоса», несомненно, обогатит интеллектуальный мир каждого, кто его прочитает. Если о достоинствах книги судить по тому, в какой мере она порождает «хорошие» вопросы, то книга Пригожина и Стенгерс отвечает самым высоким критериям. Приведу лишь несколько из вопросов, возникших у меня при ее чтении.

Как можно было бы определить, что такое флуктуация вне стен лаборатории? Что означают в терминологии Пригожина «причина» и «следствие»? Можно с полной уверенностью утверждать, что, говоря о молекулах, обменивающихся сигналами для достижения когерентного, или синхронизованного, изменения, авторы отнюдь не впадают в антропоморфизм. При чтении книги возникает множество других вопросов. Испускают ли все части окружающей среды сигналы все время или лишь время от времени? Не существует ли косвенная, вторичная или n-го порядка связь, позволяющая молекуле или живому организму реагировать на сигналы, не воспринимаемые непосредственно из-за отсутствия необходимых для этого рецепторов? (Сигнал, испускаемый окружающей средой и не детектируемый индивидом А, может быть воспринят индивидом В и преобразован в сигнал другого рода, для обнаружения которого у А имеется все необходимое. В этом случае индивид В выступает в роли преобразователя сигнала, а индивид А реагирует на изменение окружающей среды, о котором получает сигнал по каналу связи второго рода.)

Возникает немало вопросов и в связи с понятием времени. Как авторы используют выдвинутую гарвардским астрономом Дэвидом Лейзером идею о том, что мы обладаем способностью воспринимать три различные «стрелы времени»: стрелу, связанную с непрерывным расширением Вселенной после Большого взрыва; стрелу, связанную с энтропией, и стрелу, связанную с биологической и исторической эволюцией?

Еще один вопрос: насколько революционна ньютоновская революция? Разделяя мнение некоторых историков науки, Пригожин и Стенгерс отмечают неразрывную связь ньютоновских идей с алхимией и религиозными представлениями более раннего происхождения. Некоторые читатели могут заключить из этих слов, что возникновение ньютонианства не было ни скачкообразным, ни революционным. Я все же склонен думать, что произведенный Ньютоном переворот в науке не следует рассматривать как результат линейного развития более ранних идей. Более того, я убежден, что развитая на страницах «Порядка из хаоса» теория изменения свидетельствует о несостоятельности подобных «континуалистских» взглядов.

Даже если ньютоновская концепция мира не была вполне оригинальной, это отнюдь не означает, что внутренняя структура ньютоновской модели мира была такой же, как у предшественников Ньютона, или находилась в таком же отношении к окружающему внешнему миру.

Ньютоновская система возникла в эпоху крушения феодализма в Западной Европе, когда социальная система находилась, так сказать, в сильно неравновесном состоянии. Модель мироздания, предложенная представителями классической науки (даже если какие-то ее детали были заимствованы у предшественников), нашла приложение в новых областях и распространилась весьма успешно не только вследствие ее научных достоинств или «правильности», но и потому, что возникавшее тогда индустриальное общество, основанное на революционных принципах, представляло необычайно благодатную почву для восприятия новой модели.

Как уже говорилось, машинная цивилизация в попытке обосновать свое место в космическом порядке вещей, ухватилась за ньютоновскую модель и щедро вознаграждала тех, кому удавалось продвинуться хотя бы на шаг в дальнейшем развитии модели. Автокатализ происходит не только в химических колбах, но и прежде всего в умах ученых. Эти соображения позволяют мне рассматривать ньютоновскую систему знаний как своего рода «культурную диссипативную структуру», толчком к возникновению которой послужила социальная флуктуация.

Как я уже отмечал, идеи Пригожина и Стенгерс играют центральную роль в последней по времени научной революции. Есть немалая ирония в том, что я же сам не могу не видеть неразрывной связи этих идей с наследием машинного века и тем явлением, которое получило в моих работах название цивилизации «третьей волны». Если воспользоваться терминологией Пригожина и Стенгерс, то наблюдаемый ныне упадок индустриального общества, или общества «второй волны», можно охарактеризовать как бифуркацию цивилизации, а возникновение более дифференцированного общества «третьей волны» — как переход к новой диссипативной структуре в мировом масштабе. Но коль скоро мы считаем приемлемой эту аналогию, почему бы нам не рассматривать точно таким же образом переход от модели Ньютона к модели Пригожина? Несомненно, речь идет лишь об аналогии, помогающей, однако, уяснить суть дела.

Наконец, вернемся еще раз к по-прежнему острой проблеме случайности и необходимости. Если Пригожин и Стенгерс правы и случайность играет существенную роль лишь в самой точке бифуркации или в ее ближайшей окрестности (а в промежутках между последовательными бифуркациями разыгрываются строго детерминированные процессы), то не укладывают ли тем самым Пригожин и Стенгерс самую случайность в детерминистическую схему? Не лишают ли они случайность случайности, отводя случаю второстепенную роль?

Этот вопрос я имел удовольствие обсуждать за обедом с Пригожиным. Улыбнувшись, тот заметил в ответ: «Вы были бы правы, если бы не одно обстоятельство. Дело в том, что мы никогда не знаем заранее, когда произойдет следующая бифуркация». Случайность возникает вновь и вновь, как феникс из пепла.

«Порядок из хаоса» — книга яркая, захватывающе интересная, блестяще написанная. Она будоражит воображение и щедро вознаграждает внимательного читателя. Ее нужно изучать, наслаждаться каждой деталью, перечитывать, снова и снова задаваясь вопросами. Эта книга возвращает естественные и гуманитарные науки в мир, где ceteris paribus — миф, в мир, где все остальное редко пребывает в стационарном состоянии, сохраняет тождество или остается неизменным. «Порядок из хаоса» проецирует естествознание на наш современный, бурлящий и изменчивый мир с его нестабильностью и неравновесностью. Выполняя эту функцию, книга Пригожина и Стенгерс отвечает высшему подлинно творческому предназначению: она помогает нам создать новый, не виданный ранее порядок.

Олвин Тоффлер

Лучше зажечь одну маленькую свечку, чем проклинать темноту (Конфуций)

Последний раз редактировалось Catriana; 29.10.2008 в 19:01..
Catriana вне форума   Ответить с цитированием
Старый 29.10.2008, 18:56 Вверх     #7
Zfoni
Близкий Знакомый
 
Аватар для Zfoni
 
  
Регистрация: 12.03.2005
Был(а) у нас: 30.12.2008 12:19
Сообщений: 243

Пол: Мужской
По умолчанию



Лучшие умы человечества собрались на научную конференцию. Обсуждается вопрос: "сколько будет дважды два".

Инженер колдует с рулеткой и логарифмической линейкой, после чего уверенно объявляет результат: "3,99". Физик обратился в службу технической поддержки, поставил численный эксперимент на компьютере и доложил: "между 3,98 и 4,02". Математик посмотрел в потолок, подумал и сказал, что точного ответа он не знает, но зато может доказать, что этот ответ существует. Логик попросил более точно определить, что такое "дважды два". Философ полчаса рассуждал о том, что "дважды два" можно понимать совершенно по-разному. Хакер предложил взломать защиту секретной сети Пентагона и заставить все компьютеры решать эту проблему. Наконец, бухгалтер сказал: "Закройте все двери и окна, а теперь ответьте - а сколько вы хотите получить?"
==============================



Так весь народ распугаете. Не лучше ли излагать собственные мысли ? Нобелевских лауреатов привлекать только в виде ссылок, а для будущих академиков есть свои ресурсы в сети.
Zfoni вне форума   Ответить с цитированием
Старый 29.10.2008, 18:56 Вверх     #8
vengeance
Лучший Друг Форума
 
Аватар для vengeance
 
   Возраст: 50
Регистрация: 15.06.2007
Был(а) у нас: 10.11.2009 08:08
Сообщений: 1,046

Пол: Мужской
По умолчанию

Цитата:
Сообщение от Catriana Посмотреть сообщение
А можно ли объяснить человеку, далекому от физики, как осуществляется этот самый мгновенный квантовый инфообмен? Если он основан не на привычных способах передачи информации, которые не могут превышать сверхсветовой скорости, то на каких?
Дело в том, что поведение спутанных квантовых частиц описывается пси-функцией, и найти аналоги такому поведению в привычном нам мире, скажем так, несколько затруднительно.
Цитата:
Эту проблему обычно называют двойственной или дуальной корпускулярно-волновой природой квантовых частиц, причем свойственна она, судя по всему, всем объектам субатомного мира (см. Теорему Белла). Мы должны понять, что в микромире наши обыденные интуитивные представления о том, какие формы может принимать материя и как она себя может вести, просто неприменимы. Сам факт, что мы используем волновое уравнение для описания движения того, что привыкли считать частицами, — яркое тому доказательство. Как уже отмечалось во Введении, в этом нет особого противоречия. Ведь у нас нет никаких веских оснований полагать, будто то, что мы наблюдаем в макромире, должно с точностью воспроизводиться на уровне микромира. И тем не менее дуальная природа элементарных частиц остается одним из самых непонятных и тревожащих аспектов квантовой механики для многих людей, и не будет преувеличением сказать, что все беды начались с Эрвина Шрёдингера.
Цитата:
Сообщение от Catriana Посмотреть сообщение
И еще вопрос: могут ли находиться одновременно в двух местах только две частицы, или это возможно и для, скажем, двух атомов или молекул?
На этот вопрос лучше всего ответить в рамках теории Эверетта, постулирующей, что вселенная квантовая, т.е. описывается волновой функцией, включающей в себя сразу все возможные состояния частиц, и которым приписываются разные вероятности, и которые, соответственно, полностью идентичны по набору квантовых частиц. А все её наблюдаемые варианты - это как бы проекции этой единой многовариантной Вселенной на разные состояния наблюдателя. Так что, говоря простым языком, это не ложка гнётся вовсе не две частицы в разных местах, а одна в одном и том же месте.
Цитата:
Сообщение от Catriana Посмотреть сообщение
И как все же относится научный мир к теории Прибрама?
Я Вам не скажу за всю Одессу... (с)
Имхо никак. Научный тезис должен быть фальсифицируем(то-есть, мы можем представить себе эксперимент, опровергающий его), в противном случае, это к науке имеет весьма посредственное отношение. Другое дело, что такому человеку как Прибрам, даже пусть авторитетному в своей области, всякие фантазии насчёт квантовой физики и картины построения мира в целом, вполне сойдут с рук, как неспециалисту, в то время как видному физику такие измышления могут стоить научной репутации.
vengeance вне форума   Ответить с цитированием
Старый 29.10.2008, 19:12 Вверх     #9
Catriana
Лучший Друг Форума
 
Аватар для Catriana
 
  
Регистрация: 14.12.2007
Был(а) у нас: 13.07.2020 11:31
Сообщений: 1,726

Пол: Женский
По умолчанию

Цитата:
Сообщение от vengeance Посмотреть сообщение
На этот вопрос лучше всего ответить в рамках теории Эверетта, постулирующей, что вселенная квантовая, т.е. описывается волновой функцией, включающей в себя сразу все возможные состояния частиц, и которым приписываются разные вероятности, и которые, соответственно, полностью идентичны по набору квантовых частиц. А все её наблюдаемые варианты - это как бы проекции этой единой многовариантной Вселенной на разные состояния наблюдателя. Так что, говоря простым языком, это не ложка гнётся это вовсе не две частицы в разных местах, а одна в одном и том же месте.

Так эта проекция может выглядеть как две молекулы, клетки, организма в разных местах, в то время как он один и находится в одном и том же месте?

И если картина зависит от состояния наблюдателя, то каким образом вообще отличить объективную картину от субъективного восприятия наблюдателя? Выходит, что для разных наблюдателей "реальность" выглядит по-разному, и нет никакого критерия истинности (потому что этот критерий снова зависит от состояния того, что его устанавливает)?

Цитата:
Я Вам не скажу за всю Одессу... (с)
Имхо никак. Научный тезис должен быть фальсифицируем(то-есть, мы можем представить себе эксперимент, опровергающий его), в противном случае, это к науке имеет весьма посредственное отношение. Другое дело, что такому человеку как Прибрам, даже пусть авторитетному в своей области, всякие фантазии насчёт квантовой физики и картины построения мира в целом, вполне сойдут с рук, как неспециалисту, в то время как видному физику такие измышления могут стоить научной репутации.
Прибрам не фантазировал насчет квантовой физики. Он описывал работу мозга, память и восприятие. Естественно, на основании серии экспериментов. Он утверждал, что мозг и память устроены по голографическому принципу. В этой области он был специалистом.

А насчет квантовой картины построения мира в целом "фантазировал" Бом - очень даже видный физик. Насколько мне известно, научной репутации он не лишился.

Лучше зажечь одну маленькую свечку, чем проклинать темноту (Конфуций)
Catriana вне форума   Ответить с цитированием
Старый 29.10.2008, 19:19 Вверх     #10
Catriana
Лучший Друг Форума
 
Аватар для Catriana
 
  
Регистрация: 14.12.2007
Был(а) у нас: 13.07.2020 11:31
Сообщений: 1,726

Пол: Женский
По умолчанию

Цитата:
Сообщение от Zfoni Посмотреть сообщение


Лучшие умы человечества собрались на научную конференцию. Обсуждается вопрос: "сколько будет дважды два".

Инженер колдует с рулеткой и логарифмической линейкой, после чего уверенно объявляет результат: "3,99". Физик обратился в службу технической поддержки, поставил численный эксперимент на компьютере и доложил: "между 3,98 и 4,02". Математик посмотрел в потолок, подумал и сказал, что точного ответа он не знает, но зато может доказать, что этот ответ существует. Логик попросил более точно определить, что такое "дважды два". Философ полчаса рассуждал о том, что "дважды два" можно понимать совершенно по-разному. Хакер предложил взломать защиту секретной сети Пентагона и заставить все компьютеры решать эту проблему. Наконец, бухгалтер сказал: "Закройте все двери и окна, а теперь ответьте - а сколько вы хотите получить?"
==============================



Так весь народ распугаете. Не лучше ли излагать собственные мысли ? Нобелевских лауреатов привлекать только в виде ссылок, а для будущих академиков есть свои ресурсы в сети.
"Я вас не обидел?"
"Смотря какой смысл ты вкладываешь в понятие "я"... "

Собственные мысли излагать лучше. Если это грамотные мысли. А если нет- лучше уж чужие. Потому что у меня не получается излагать своими словами то, в чем я недостаточно разбираюсь. Для того, чтобы понять прочитанное, - мозгов и знаний хватает, чтобы пересказать - нет. Я пробовала - на уровне популярной завлекательной статейки получается, на серьезном уровне - очень плохо.

А хочется понять лучше, потому что мне интересны именно те области психологии, которые основаны на этих нетривиальных идеях. Так что у меня свой корыстный интерес.

Лучше зажечь одну маленькую свечку, чем проклинать темноту (Конфуций)
Catriana вне форума   Ответить с цитированием
Ответ


Метки
1917, в мире, газа, группы, времени, времён, войны, воспоминания, вселенная, будущее, буддизм, выбираем, герой, геология, зависимость, замки, звезды, здоровье, развитие, роскошь, реальность, революции, картинки, игры, из ничего, известная, изучение, критика, личности, контроль, империя, концерт, информация, интерпретации, интересно, искусство, исследования, лечение, образ, обитания, найти, настройка, наше время, орган, природа, проблема, проблемы, прогнозы, производство, пространство, процесс, предсказания, новый, новый мир, поколение, описания, последние, подарок, ответы, отрывок, открытие, открытия, песни, песенку, медицина, оценить, сборник, среда, следствие, следы, сознание, смерти, семья, табу, тайны, традиции, уроки, холст, футбол, феномены, энергия, это просто, если, достижения, дело, день, деньги, цивилизации, цивилизация, что такое, чудеса, человека, человечество



Ваши права в разделе
Вы не можете создавать новые темы
Вы не можете отвечать в темах
Вы не можете прикреплять вложения
Вы не можете редактировать свои сообщения

BB коды Вкл.
Смайлы Вкл.
[IMG] код Вкл.
HTML код Выкл.

Быстрый переход

Похожие темы
Тема Автор Раздел Ответов Последнее сообщение
Словарь терминов и сокращений AlexStorm Видео Лаборатория 3 28.06.2007 14:12


Часовой пояс GMT, время: 00:00.


Powered by vBulletin® Version 3.8.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Follow FriendsForumCom on Twitter liveinternet.ru Рейтинг@Mail.ru